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PREFACE

In recent years a new science (aerothermochemistry) has been /3
formed at the junction of such sciences as, for example, the kinetic
theory of gases, chemical kinetics and gas dynamics. This science
is concerned with the study of gas flows at great velocities when
chemical conversions are possible. Since rocket technology has
developed so rapidly, we are confronted with the problem of shield-
ing instruments from heat at very high temperatures. The process
of ablation involving heat-protective material is a rather complex
one. This process may involve fusion, fusion with evaporation of
the melted coating, sublimation, surface combustion and the mechan-

ical and heat erosion of the fairing.

A strict mathematical formulation of the above problems re-
quires solving nonlinear parabolic equations of a hypersonic boundary
layer with boundary conditions on the moving surfaces, where gen-
erally speaking, there may be several. Often the surface temperature
or the degree of gasification given as the boundary conditions,
must also be determined as a result of solving this problem. This
paper 1s devoted to formulating problems and the numerical solution
to equations of a chemically nonequilibrium boundary layer. All
the numerical calculations have been made from a sample of heat-
protective carbon. The numerical results obtained by calculating
the frozen and equilibrium boundary layer are also compared with
the results of calculating the chemically nonequilibrium boundary
layer. We have studied the effect from a model of molecular re-
actions on the parameters of the boundary layer and the discrepan-
cies in the experimental data with respect to the pressure of sat-
urated carbon vapors. In the calculations we have taken into account
the final reaction rate on the surface of the covering and in the
pores of the material. In making the numerical calculations we
tried to use formulas and numerical values for the transfer coef-
ficient, the chemical reaction constant, etc., that are possibly
more precise. However, with the appearance of new and more refined
information about these values, the numerical results of course /n
may be improved. At the present time virtually no educational 1it- ‘—
erature or monographs exist on aerothermochemistry. .Therefore, we
decided to present the problems of aerothermochemistry, indicated
above, in considerable detail.

The author wishes to express his appreciation to Anatoliy
Alekseyevich Dorodnitsyn for the suggested theme, for extremely
valuable advice during its development, and for constant attention

to the project.
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CONVENTIONAL SYMBOLS

x, -Cartesian coordinates

5} -mean mass gas velocity;

e, -mass concentration of the o-component in a mixture of
gases;

jai —compone?t vector ?f the diffusion current of the o-com-
ponent in a gas mixture;

Ra -mass velocity of the for@ation of the oa-component as
aresult of all the reactions in the gas phase;

pPsp,T -pressure, density, and temperature, respectively.

t -dimensionless temperature t=T/Te;

ha -complete enthalpy of the a-component, ha=hg+fcpadT;

R -universal gas constant;

DaB -binary diffusion coefficient;

i -thermal conductivity coefficient of the mixture;

Pr -Prandtl number of the mixture;

£ -blackness coefficient of the surface;

o -Stefan-Boltzmann constant;

k (kb) -velocity constant of a direct (inverse) reaction;

vé,vg -stoichiometric coefficients;

Aa -symbol for the a-chemical component in gas mixture;

Ma -molecular weight of the o-component;

Na -Avogadro's number;

n -viscosity coefficient of the mixture;

X -equilibrium constant calculated on the basis of the

p partial pressure of the components;

s,n -coordinates connected with the generatrix of the body;

¥ -current function;

U,V -vector components of the mean mass velocity in the
coordinates

cp -heat capacity of the mixture at a constant pressure;

A, L -Lewis numbers;

k -Boltzmann constant;

A -sticking probability;

A% AT -displacement width, pulse loss width;



-molecular mass of the a-component;

nz -number of a-component molecules per unit volume;
T* -reduced temperature;

L -heat of sublimation;

E -activation energy of the reaction;

QZ ~-heat of the I-th reaction;

r -mean statistical radius of the pores.

Subscripts and other symbols.

The subscript "e" refers to the values of functions on
the outer edge of the boundary layer and subscript "w" refers to
the values of functions on the surface of the body.

In the numerical calculations, number subscripts have
been used for concentrations: ¢; - ¢, C», - CO, C3 - CO2, Cy - O,
Cg - 0, Cg - N, C7 - Npop, Cg - NO.

A line generally signifies that the pertinent value
characterizing the a-component in a gas mixture refers to the
molecular weight My. Latin subscripts ordinarily refer to vector
components in the Cartesian system and Greek subscripts refer to
components of the gas mixture. The other symbols and subscripts
are defined in the text.
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CHAPTER 1
ELEMENTS OF THE KINETIC THEORY OF GASES
1. Boltzmann Equations

Let us look at the dynamic behavior of a system of monatomic /6%
particles. We know from classical mechanics that the dynamic
state of a system at any a priori given moment of time is determined
entirely by which coordinates and particle impulses are assigned
at the initial moment of time. A system having »n degrees of free-
dom is usually determined by the variables pi1,...,Pn and qis...5qy>»
where g; represents the generalized coordinates and p; represents
the impulses corresponding to them, which are determined by the
equations

p, = oL/a4,, (1.1.1)

where q; = dq;/dt, L = T - U. Here L is the Lagrangian, T(g,q) is
the kinetic energy, U(g) is the potential energy. Both here and
below the absence of a subscript in the variables means that the
function generally depends on the complete set of independent var-

ables. If the system consists of N particles (a value usually on
the order of 1023) then for particles not having internal degrees
of freedom (rotations, vibrations, etc.), n = 3N, since for each

particle, three translational degrees of freedom are required.
Thus, it 1s actually impossible to give a complete description of
the state of a complex macroscopic system. In a statistical defi-
nition the concept of an ensemble of dynamically similar systems

igs used. The state of a system at a given moment of time can be
represented by a point in the phase B8N-dimensional space of a gas
which is a combination of configuration space and pulse space.

The position of the system in configuration space is determined by
;N(;l,...,;N) and in the pulse space the pulse of the system is
given by the vector EN(El,...,EN). However, in a statistical defi-
nition, it is not the movement of one single representative point
in the phase space of the gas that is studied, but that of an entire

o
w
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combination of phase points which represent a set of possible /7
states of the system. Such a combination of phase points is called
an ensemble. The state of such an ensemble is determined by the

distribution function fN(;N,EN,t), which is the probability phase

density. A change in the function f* versus time, as we know, can
be described by the Liouville equation which is a generalized equa-
tion of continuity. However, this equation has 6N independent
variables and is difficult to solve. Thus in formulating kinetic
equations we use distribution functions of a much lower order,

. . . (1), =» . . .
primarily of the first f (ryp,t), and only in studying high
density gases are we concerned with a distribution function of the

second order f(z)(;l,;2,51,52,t-

Let there be a gas consisting of u components. Let us then
call the independent variable 3,3,,+ the distribution function!

> > * > AP
fz(r,va,t) so that the value gy _f (r,D,,t)drdd,

((Xs],-u,ll»; d?=dxld12dx3; d?’a= dvladl)2“d03a), (1.1.2)

for the moment of time %, is the mathematical expectation of the
number of atoms of the o-component which have the coordinates &4
and velocity projections A{, that satisfy the inequalities

X; SE; <X dr Ui S SV Ay, (1= 1,2,3). (1.1.3)

It is obvious that the set of functions f is sufficient for des-
cribing a gas whose properties are independent of the relative
position of two or more particles. Thus, the following discussion
is valid for a sufficiently rarefied gas in which the sizes of the
molecules are small in comparison with their mean path, while the
time of influence of the intermolecular forces during collision is
small in comparison with the time of molecular movement between
collisions. In addition, let us assume that the contribution of
triple collisions is small and does not noticeably affect the type
of distribution function. If the gas is found in the force field

} which acts on a-type molecules the 81mpllfy1ng assumption is
t%en natural that these forces are small in comparison with the /8
forces acting on the molecules at the time of collision. -—

At the moment of time ¢ there are fa(r va t) dr dv molecules

per volume element d¥ around point r, if the velocitie® of the

-> > " .
molecules are in the range va, dva 2, If no collisions occur, at

. . . . . . .
There 1s no reason to examine a single-particle distribution funec-

tion for the entivre gas, since the component molecules of the mix-
ture possess different masses and mean velocities,.

Both here and below the expression "moleculesv ’dva" signifies (as
in [1]1): "moleculeS of o-type, whose velocities dre In the range
> > >
v ,v_ + dv ",

a’ “a a
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the moment of time ¢ + dt all these molecules would then be in a
volume d?# around point ¥ + 3adt with velocities in the range of

o+ F dt,d; . Their number f (r + 0 dt, 5 + F dt, t + dt) would
c3incifde witf the initial ones? However, a® a rdsult of col-
lisions some of the molecules from the first group do not enter the
second group, while some of the molecules not found in the first
group at the moment of time 7 do enter the second group. In a
multicomponent gas in which chemical reactions take place, two
types of collisions are possible: elastic collisions during which
no exchange of energy occurs between the internal and translational
degrees of freedom,and inelastic collisions in which such an ex-
change does occur. Below we assume that the internal energy of

the molecules is accumulated only from the translational energy

and the potential chemical energy h0 the value of which depends on
the chemical affinity between the specific gases. The other forms
of internal energy (rotations, vibrations) have not been studied.
Then the absolute increase in the number of molecules of the a-
component in the second group is proportional to d» dﬁadt but

equal to (Aﬁia+ K )d» dv dt where the first term represents elas-

tic, and thgtsecond term inelastic, collisions. Thus:
[f(F+Bdt, 8, +F, dt, tedt) —f,(F,D,, D1dTdv, = (1.1.4%)
B, (";{h Ka)d?dﬁadt.

The left-hand side of this equation can be expanded into a Taylor

. N > >
series near the point (r,v,, t):

e 2 Ta, 3 Ao =———aefa

=24 3 . K., a=1,ce,pe
3t Ti=a “‘axi+i=l of gu,;  at T ’

(1.1.5)

It is obvious that the equation for a free molecular stream can
be written in the form

d 3 d 3 d
._;fg__'.zv,.._fg,*_z fa‘

L .1.6 3
ot i=1 ' 9x; i=1 % y; 0 h Pz
Let us obtain expressions for 3,f4/3% under conditions of molecular
chaos when the relative positions and speed of two molecules prior

to collision have no statistical dependence and such a dependence

is created only after collision. To obtain accurate expressions

for the collision terms [the right-hand side of equations (1.1.5)]

we must know the nature of the molecular reactions during collisbn.
Experiments show that molecules at distances exceeding the molecular
dimensions attract one another poorly, but at distances ¢lose to

the molecular dimensions they are strongly repelled. During elas-

tic collisions it is natural to consider the molecule as the center



of a spherical, symmetrical, force field which has the potential

o™ (1.1.7)

where » is the distance between the two given particles n and m;

A and B are positive constants with n > m. Simpler models of molec-
ular reaction have been studied. One of the simplest models is

the concept of a molecule as a smooth and absolutely elastic sphere.
Maxwell investigated a case when the reaction force between molecules
was a repulsion force that is inversely proportional to the fifth
power of the distance. In this case the collision integral is
clearly independent of the relative molecular velocity.

Thus, let us investigate the elastic collision of two molecules,
whose masses are my and . Prior to collision when there is still
no noticeable interaction getween them, let the velocities of the
particles be 3a,5-, and after collision let them be 3'a,3'j Let

us 1introduce the symbols mg = ma + mj; Ma = ma/mo;and Mj = mj/mo and

write the equation of the conservation of momentum:

-+ - > 4
mal’ai»mil)} =ma|)a +MI-U'-. (1.1.8)
Here we have used the condition of conservation of mass of the
particles: m, = m&,m- = m%, since we have studied that portion of
the collisions that does not result in chemical reactbion. From
equation (1.1.8) it follows that, at the time of the collision,

the center of the masses moves at a constant velocity G:

G-M3D N
aVa + M;0; (1.1.9) /10

Let us introduce the relative velocities gja,g 59 ,g 7 which

are, respectively, the initial and final veloc1t1es of the molecule

J relative to a molecule of the a(gja, g}a)—type and, conversely

(g . g'aj)' Thus by definition
>

-» - > . >
8ia=VY; Vo= "8qj5 Bja=V;~Vy="8gj (1.1.10)

’ !
Thus, the values for the vectors gjaand gaj as well as gja and gaj

are equal pairwise. Let us show that the values for all these
vectors are equal to one another. In fact the law of conservation
of energy gives ‘

-2 +m v %

1 2 2 1
(m v +m.v.)=—'(
2 b Y0 = g ala (1.1.11)

But, as is easily seen:



pd - -
-l.)anG-ﬁ-Migal; v}= agl‘a; (1-1.12)

Dy O
+

- r -»> py - 2
U,=G+M;g,;; v;=G+Mag;,. (1.1.13)

Using (1.1.12) and (1.1.13)we obtain:

mve+m vl am (G2 MM g"); (1.1.1%)

»2 2 2 .
MV, +mpy, =mg(GT+MM g 5, (1.1.15)

Fig. 1

>
where G, g, g' represent values of the vecbrs 3, g .39 _ .. From
(1.1.14) and (1.1.15) it follows that g = g'. ag” " ad

The geometry of the collision is represented in Figure 1. Let
us examine the movement of molecule m; relative to the center 4 of
molecule my. Thus, in Figure 1 a coordinate system moving along
with my is studied. In this coordinate system m. represents a
curve lying in plane PON. The plane (perpendicular to line OP)} and
line AP’||OP are drawn through point A. Since the force field of
molecule my is spherically symmetrlcal the lines AP', OP and ON
lie in a single plane. It is easy to see that the collision is
completely determined if in addition to the relative velocity g a
two geometrical parameters are given: the impact parameter b an%
the angle & between the line of intersection of planes Z and ¢ and
a randomly chosen direction in plane Z. Let us introduce the unit
vector as is shown in Figure 1. Let us note that the center line
0A (joining the centers of the molecules at the moment of the
greatest convergence) is the bisector of the angle PON. Then the
value and the direction of g’ja are entirely determined by the
vectors k and §j4:

B.. =8, =2(F. -k)k.
Sia = 8ja = 2(8ja"k) (1.1.16)
Using (1.1.16), from (1.1.12) and (1.1.13) we obtain:
Vg ~Va= 2M; (Fjo k)= 2M; (8- B)R; (1.1.17)
U =P = -2Mo(fa- k)b = 2Mo(d/, - R)R. (1.1.18)

Let us find the number of particles expelled durlng time dt
from a group of o-molecules per volume element r,dr with velocities
in the range ¥ ,d? as a result of collisions with j-type molecules,.
Let us examine the movement of center B of a j~type molecule rela-
tive to center 4 of an o-type molecule. Let the velocity of mole-



cule B be in the range 3J dv; and the geometrical parameters of

the collision be in the range e,de3b,db. Then for a collision of
this type to occur during the tlme dt molecule B must be in an
elementary cylinder with a base area bdbde and a height 9; adt (see
Fig. 1). It is obvious that such a cylinder represents each c-mole-
cule of the first group, and if db,de,dP, are small enough we may
assume that the volumes of these cyllnders do not overlap. Thus,
the entire volume of these cylinders is

. + -
dc =fagiabd,bdedvadldt. (1.1.19)
The total number of j-molecules studied in this volume is: /12
* -+
fjdv;de = g;. fof; bdbdedidtdd, dv, . (1.1.20)
Let 0,7 be the probability of an elastic collision of a- and j-type
molecules. Then the number of elastic collisions of oa- and j-mole-
cules is f.o d3 de. The entire number of collisions and the

J oo
(=)
total number ~£f;—— dgad; dt of oa-type molecules which leave the
first group as a result of elastic collisions is found by integra-

ting over all possible values of b, €, ﬁj and by summing of all
types of molecules:

9 f“ Zela gy dfdt=di drth 11.f; 8  bdbdedi, . (1.1.21)

jo °‘l

Let us find the number of o-molecules which have velocities
D4sdB, as a result of collisions per volume element ¥,d#. Such
collisions are called inverse collisions.

Repeating the considerations given above, we can show that?

(+)

- ’ r o I I >
dvadrdt=d;a.d?dt;] fﬂ.fafl 8ja % b db dedvi ’ (1.1.22)
where
TR S - +1nv
fa=fa(?,vanv,t), f Hf( t). (1.1.23)
We can easily show that the velocities Uanv’ 3§nv which are the

initial velocities of molecules in inverse collisions are equal to
the final velocities of molecules in direct collisions. In fact,
on the basis of analogy with (1.1.17) and (1.1.18) we can write:

3
It is natural to assume that the probablllty of an elastic colli-
sion depends on the modulus of relative velocity of the colliding

molecules. Since g = g', Oaj = o&j




+2.inv o+ inv i »> 3 > s
J B -ZM (-nln_v -k 1n_v)k inv,

v =
o o
inv in . (1.1.24)
> ” ..1nv s Vv *inpv o inv
V. B 1N =2M -k k .
i Yj a!8 ju ) (1.1.25)
, zinv _ yinv _ > >,inv _ > -o,inv
Eut, as we can easily see Kk = -k and 9ia 93027y = va’vj
vj conventionally. Then
* _ainv > T
Vo=V @ =—2M(g;, -k)k; (1.1.26)
-» -»in_v -» 2.7
v; —v; = 2M (8,4 k). (1.1.27)
Hence, it follows that ;;nv = ;&,+;nv 35. Let us show that /13
- -» A4 >
d”adv;' =dvadvi' (1.1.28)
In fact, from Jacobian theory we know that
Y e Al e ’
dvadv,-ﬂ]dvadvj, dvadvI=|I|dvadv I-1 =1. (1.1.29)
> > .
But, as follows from (1.1.17) - (1.1.18) v&,v} are expressed linearly
by ;a,;'. Making the pertinent differentiations in calculating

the Jacobians and considering that, in calculating the partial de-
rivatives, Z is assumed to be a constant we can easily see that

I = I', whence follows (1.1.28). Considering, also, that gﬁa =9,
and b' = b we obtain finally: J J
a_f i . s

e’ % — . ) . -’~ .

_"'a_t—': if_l‘fffca.](fafj fafl )gajbdbde‘ivl (1.1.30)

Thus, the Boltzmann equation which takes into account the chemical
reactions in a u-component gas mixture 1s written in the form

d - 0 -
fa+(va f F.a’.a

at

[ o
= 2 ( .~ . )
ot Ay  J= SOy =Fal;) > (1.1.31)
bdbdedl’ +K (=100, t) e

xg” o

This derivation of the integral-differential Boltzmann equa-
tion yields a clear physical interpretation of the terms in the
equation. It may be obtained in a stricter fashion from the
Liouville theorem (see [2]) where kinetic equations for multiparticle
distribution functions are studied. ‘

2. The Transfer of Molecular Characteristics

Let By be the velocity of a molecule of the a-component in a
fixed coordinate system. Then the mean velocity of a-component



molecules is determined by the equation
-»

- 1 e > - >
Vo o S Vafo(r, v, t)dy . (1.2.1)
The mean mass velocity 30 of the gas mixture is /14
b, =L Eamp
Yo = % 4oy "a"ala" (1.2.2)

->
Thus, by definition the mean mass velocity vg is equal to the veloc-
ity at which a unit volume mass of gas must move for the impulse of
this volume to be equal to the impulse of the mixture.

>
The heat velocity 7V, of a molecule is the molecular velocity
relative to the coordinate system which moves at a mean mass velocity,

i.e.,

Vy - b, -0

o= Vel (1.2.3)
The diffusion velocity is the mean molecular velocity of the a-com-

ponent relative to the coordinate system moving at a mean mass
velocity

=3 3 >
Vo =V =Vos (1.2.4)
i.e., ﬁa is the mean heat velocity of the a-molecules. Then the

diffusion current of the a-component is
-+

fanmanava, a-=1p"‘lp" (1.2.5)

Summing (1.2.5) over o from 1 to u we obtain

2

ts 3k s .
= aElmana a= a.E- ma"a(va-”o)=0- 1.2.6)

“Generally if ¥,(D,,%,t) is a random scalar vector or tensor func-
tion the mean value of Wa(?a,?,t) is designated by Y, and deter-
mined by the equation

- 1 -
Yo(Fot) = ﬁ—;f\ya(va,i',t)fa(ﬁa,'r’,t)d'ﬁa. (1.2.7)
Iif Wa(ﬁa,;,t) =1, ga = 1, since obviously
- -»
Nog= [ falPos?, VG (1.2.8)

If ¥, = 3a’ then (1.2.7) coincides with (1.2.1) which gilves a

definition of the mean velocity of the a-molecules; with Wa = ?a,
(1.2.4) follows from (1.2.7), etc.



In the gas let us sgudy the elementary surface ds which moves
at a mean mass velocity vy relative to the fixed coordinate system
(Fig. 2), and let us introduce for ds the positive direction of
the normal #. Let us find.the number of a-component molecules
which intersect ds in the positive direction # during the time dt.
Since the characteristic velocity of CG-molecules
relative to ds 1is Va’ all the molecules that are
initially found in the volume d¥ = V,dtds cos®b,
intersect ds during the time d{., The number of
' these molecules is fo(?,9 ,t)dVyVy cos 8 dtds.

Vdt

A}
s

A transfer of mass, impulse and energy occurs as

a result of the current of a-molecules through ds.
Fig. 2 Any functions of Wa(ga,;,t) of this kind are
¥ termed molecular criteria. Thus, the current
dré+) @ of the scalar molecular sign ¥  in the direction # is given
by the equation

+) v

dI‘: Yo Swa(},;a.t)fa(?, i;'a,t)Vacos edV dtds. (1.2.9)
_) + + . - . ) . .

If Wa(r,va,%) is a vector function (e.g. impulse),it is convenient

to study the transfer of scalar components of the molecular criter-

ion ¥,. We obtain the current F£+) o by integrating over all-high-
speed groups for which Van >0 (Van is the projection of the

. > . . >
velocity Vg for the direction n).

(+)y
T, *a-dsdt [ R

Von> (1.2.10)

In an entirely analogous fashion the current ¥, in the negative
direction of the normal # is given by the expression

(-) >
'y Yo =-dsdt [ Yo favandva‘
V., u<0 (1.2.11)

The minus sign was placed in (1.2.11) so that the expression for
the volume element dr will be positive. The entire current ¥  in
the positive dirvrection # is FZu:

Yo )y )y >
Pn -I‘n a_rn a:detf\yafavandva, (1.2.12)
where the integration is performed over all the values of ?a. The

specific current of the sign ¥ is

\P -»
Y, % = fvefaVundVar

(1.2.13)

Let us study the mass, impulse and energy transfer in the gas.

/16



1. Let ¥, = mg. Then the equation for the projectjon of the
vector of the mass diffusion current for the direction n follows
from (1.2.183):

Jog =m 11,V dV = MM, Va,,.

o an (1.2.14)

2. If ¥g = mgVaq (2 = 1,2,3) then (1.2.13) determines the
transfer of the <- component of the impulse in the direction n. Let
the direction of the vector 7 alternately coincide with unit vec-
tors in the positive direction of the coordinate axes. Then, it is
obvious that the impulse transfer of the o-component is determined
by a symmetrical tensor of second rank.

(1.2.15)

> >
where Vava is a dyad with nine components,

eaVa1Vor PoVoiVaz PoVurs Vas

a'al?

o = ® @ o @ o o ¢ o6 5 8 ¢ o 0 0 8 8 0 o s 0

oaVosVors 0¥V 0r 0aVos V.

ald «l? o3 o2’ a3 a3

The sum of the tensors of the partial pressures yields a tensor of
the gas mixture pressures

P=zmanavava. (1.2.186)
o

>
The pressure vector p, per surface element can not coincide with
the normal to this surface. The normal pressure component per suf-
face element situated randomly in a gas is primarily positive:

-» > 2
ﬁunnsgpava “nbnzﬁpava"o (1.2.17)

By definition the average of normal pressures on any three mutually
orthogonal planes yields a hydrostatic pressure in the gas:

—

1 2
P = 3§"avan‘ (1.2.18)

1 >y

3. Let V¥ T MgV Then (1.2.13) determines the projection

+ » .
for the direction n of the kinetic energy current vector through
the surface element which is moving at a mean mass velocity

S5
1 .
9, ~ 24, = ﬁgma"av Van (1.2.19)
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Let us study the amount of molecular kinetic energy per unit
volume at the moment of time ¢:

Epin=z flm 326.d0, = zim n b2
kin= Z [3MyVq Ju zMhalaVla » (1.2.20)
> >
but V= Vo + V_; using (1.2.6) we obtain
e pﬁz P
=] 0 [« 2+ 3
E,.=-22mnviezimn Ve - 2.z .
Kim 52 atabo+t s 3 Mgl q 2 "o 2 (1.2.21)

Thus, the kinetic energy per volume element of the gas mixture

is accumulated from the energy of the visible mass movement of

the gas (Fpgcp) and from the energy of the chaotic molecular move-
ment (Emlcr§ with

Epacnd (V2 /0.

rncr (1.2.22)

Let us estimate the order of magnitude of this ratio. We know from
experiment that, for example, for nitrogen at a temperature T =
273.16°K and pressure p = 760 mm Hg the density p = 1.25-10"3g/cm3
Then from (1.2.18) V2 ~ 2.43:10% cm?:sec-?2 and for the mean mass

velocity vg ~ 1 cm/sec, Epicp/Epnacr ~ 2.43.10°. Under these con-
ditions almost all the kinetic energy of the molecules consists of
the energy of their chaotic movement. However, in addition to

translational movement energy molecules can possess vibration
energy, rotation energy, etc. During chemical reactions we must
take into account the molecular potential energy which converts to
kinetic energy during interatomic bond breaking in the molecule.
All these forms of energy together with the energy of the chaotic
movement of the molecules are identified in the kinetic theory of
gases with thermal energy Ethepym. Thus when molecules are studied

>
as point centers of force,F = E_. =3 Pa V2 | The tempera-
therm micr a 2

a
ture of the translational movement is determined by the equation
(1.2.23)

where k is the Boltzmann constant independent of the kind of gas
(k = 1.38+10-16 epg/deg).

Using (1.2.18) we find

pa=nakT, (1.2.21)
p =kIzZn,. (1.2.25)

Let the mass wy of the gas o be found in the volume V at a pressure
p and a temperature 7. Then from (1.2.24)

11



w
-k =T,
pv My (1.2.286)

From (1.2.26) it is evident that the number of gas molecules in

the volume ¥V at the same pressure p and temperature 7 is independent
of the kind of gas. This conclusion is Avogadro's law. On the
other hand we may assume that Avogadro's law was extablished exper-
imentally and that, therefore, it has been established that the
constant X and the mean kinetic energy of the molecules are inde-
pendent of the kind of gas. This conclusion has been obtained by
other means in statistical physics. The simplest study is in [3].
Historically the molecular weight of a gas is determined by the
equation

M, = 16m,/my g/mole (1.2.27)

where m,»Mo, are respectively the masses of the molecules of the gas
o and an oxygen atom. It is obvious that the number of molecules

N Ma/m = 16/mp is independent of the kind of gas. The number

N

6202%.1023 is usually called Avogadro's number.

Let heat dfy be applied to the mass of gas Wy as a result of
which the gas heats to a temperature T + dT7. This heat is required
for the completion of the mechanical work p,dV and an increase in
the thermal energy. Then

~ dE
dQ, = pdV+ —2w
o Palls g Yas (1.2.28)
where E& is the thermal energy of an ao-type molecule. For a pro-

cess occurring at a constant volume we obtain

dQ, = dE,wy/my (1.2.29)
and at a constant pressure

dQ, = (kdT +dE w /m . (1.2.30)

By definition the heat capacity of a unit mass of the gas a at
constant volume is

4Q dE
1 (S} 1 (CCa _ (1.2.31)
Cpu= W (dT)V ma(dT)y cal/g-deg

5 Here and below My signifies the molecular weight of the a-cempo-
nent.

12



and at a constant pressure it is /19

4Q 4E
1 (ZFe) 1 — .
Cou= . (dT)P mal})’(d'f),, (1.2.32)

If we assume that molecular thermal energy depends only on temper-

ature and not on pressure and volume, then from (1.2.31) and (1.2.32)
it follows that

Cpa"cvu=ldma'

(1.2.33)
As experiments show, the difference Cpa - C.a 1s actually con-
stant for a sufficiently rarefied gas. If molecular thermal energy

consists only of chaotic movement energy then using (1.2.23) we
obtain

C,.=3k/2m ; Cpa= sk/2m .

(1.2.34)
In this case, the heat capacity does not depend on temperature. 1In
fact, the internal degrees of molecular freedom substantially in-
fluence the heat capacity which is dependent on temperature. Table
1 illustrates this (cp, in Cal/mole+deg)
TABLE 1
- Temperature k-
pi 1000 | 5000 | 5000 | 7000 | 8000 | 11000
o, C 4,970 5,170 5,470 | 5,588 | 5,810 7,247
€p,co 7,930 8,895 9,100 | 8,382 | 10,41 12,16
’ .
€p,co, 12,86 14,88 15,32 14,84 14,87 14,88
€p,0 4,897 | 5,002 5,208 | 5,410 5,513 5,569
H4
€p,0 8,333 | 9,552 |10,20 10,34 9,882 | 9,098
»v2
By definition the enthalpy of o-type molecules is
A T
ha=ma(Ea+k )n (1.2'35)
while the enthalpy of the mixture
Py
h,.i—p-hf ﬁca"a» (1.2.38)

13



where ¢ is the mass concentration of the a-component, ey = Pa/0. /20

From (192.32) it follows that ©

Cpa = (a0 (1.2.37)

As 1s easily seen, (1.2.28) is the first law of thermodynamics.

In thermochemistry in contrast to thermodynamics it is justifiable
to consider the heat which is given off in the system during the
flow of chemical reactions. If we designate the thermal reaction
effects at a constant volume and pressure by €, and Qp, then

Qv:"?”’ (1.2.38)
QP=‘_QP' (1.2.39)
If a system consisting of a(a = 1,...,4) components transferred with

a constant volume from state 1 (overall internal energy Ej1) to
state 2 (Fs) as a result of chemical reactions, then

Q, - Ey-Ey (1.2.40)

For the process at a constant pressure, using (1.2.35) and (1.2.36)
we obtain

QP= (E +pV)=(E,—pV,) =w(h, —h,),
(1.2.u41)

where w = Zw,.
o
Thus, the elementary thermal effect in the isochoric and iso-
baric cases is a full differential but &, and &, do not depend on
the transfer path of the system from one state %o the other., This
assertion is known by the name Hess law. From (1.2.40) and (1.2.u41)
there follows a connection between -the respective thermal effects:

Q, = Q,+pAV. (1.2.42)

According to Hess law it follows that if identical products are
formed from two different systems as a result of different processes,
then the difference in the thermal effects of these processes is
equal to the heat transfer from the first system to the second.

Thus, the thermal reaction effect is equal to the algebraic sum of
the heats of formation of reagents from simple materials. The
standard heat of formation of a given material is defined as the

6
By analogy with (1.2.36) let us determine the heat capacity of the

. . = T
mixture by the equation ¢ ucacpa.

14



heat required to obtain one mole of material during formation from
elements in their standard state [generally 298.16°K (25°C) and
zero pressurel}. For ideal gases the heat of formation determined
in this way is equal to the heat of formation at a pressure of 1
atm. For the majority of real gases there is a very small differ-
ence between the heats of formation at zero pressure and at a pres-
sure of 1 atm, the greatest difference being several calories. The
standard state for each element is a state in which it is most
stable at 25°C and p = 1 atm, e.g., Hp, Oz, No for hydrogen, oxy-
gen and nitrogen, a liquid state for Hg and crystalline graphite
for C, etc.

Sometimes it is convenient to look at the formation enthalpies
at 0°K (see Table 2).

TABLE 2
o= "I Formation énthalpy at goK
component. kCal/mole, BO *
- — o o
C 284
CO 686,77
co, 0
O 658,97
O 0
Cct §23,8
cot 3080,4
ot 372,9
o3 282,4

3. Transfer Equations and Summational Invariants

Let us introduce a general Enskog transfer gguation of the
molecular criterion ¥5. Let us multiply the Boltzmann equation by
¥> and integrate over all the values of Py As a result we obtain

af - ar - af - e T
fwu<-é%+va- 3_—;-+[:;‘5;)-%dva=i§lﬂﬂ‘l’a(fuf} —fafj ) x
(1.3.1)

X 68y bdbdedVdV; + v Kyd g,

Using the expressions for the mean values we obtain
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> J . g a‘i’a g anaﬁa a‘l’ .
I3y Vo= 57 MvafadVo~[fu 57 dV, = —F%-n =2, (1.3.2)

a -+ - -
S¥a '7(“’“: SrT.fw“vafadva“ffav "_adva=

* 9 < F
— —.
- :—?-(uavava) -nav“-a—\'_';ﬁ. (1.3.3)

In differentiating we must remember that ?,3a are independent var-

iables. Since the forces Fy are assumed independent of the molecu-

lar velocities and ¥4fy > 0 with Py > o then

F afa -» . "al=+°°
a
(1.3.4)
Iy o v,
- e o
al ffa avaldva = ”a'Fal aval ¢
Thus, the Enskog equation:
a%ﬁa a = 5;; Ay, - 57
e, o —-— S e D-;‘— | 2 a =
3t +a?‘mawava) Mol 3¢ +Uaa? +Fa86a (1.3.5)
-2 M7 Fo f;~£.0; 15,8, bdbdedB dV, + [ K y ¥ .

Equation (1.3.5) is an integral-differential equation and, generally
speaking, it is no simpler than the Boltzman equation from which it

was obtained. However, for so-called summational invariants the
integral term 3ef,/d¢ is changed to zero and eguation (1.3.5) is
substantially simplified 7. The integral SfKydD, is the number of
particles of the a-component which are formed per unit volume per
unit of time. Then, obviously:

fxamadi;a=Ra: (1.3.6)

where R, is the mass velocity of the formation of the a-component.

2 [Komedi, = IR0, (1.3.7)

7 “
The values which satisfy the condition ¥ + Wj = W& + Y. are

called additive collision invariants.
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since the mass velocity of the formation of the material as a 23
result of chemical reactions is zero (we assume that nuclear re-
actions do not occur). Let us write the condition for the conser-
vation of momentum during chemical conversions:

Z [Kom oV, db, = 0. (1.3.8)

Finally, the condition for the conservation of energy is:

m, V2 {in®
b K o . 4 -
& “( 7 tWa [dVe= 0. (1.3.9)
It is easily shown that the first integral on the right-hand side
2 .
for collison invariants (ma, mava ﬂlfﬁ + uglnt) changes to zero.
2
In fact,
Iffma(fa'fi —fa, f]’ )bal' ﬂajbdbded-l;adl)’i =
, . (1.3.10)
- IS of; =1 f o, 8, babdedids).
However, during elastic collisions m, = m&, b =5b", dzadzj = d;&dgé,
9oi = g&j [see (1.1.15), (1.1.28)]. From (1.3.10) it follows that
fffmq(fa_fl _faf]' )O’ai Qa;bdbdedi}adi’, = 0. (l . 3. ll)

The conversion of this integral into zero for other collision in-
variants is proved analogously [4]. Thus, by successively sub-
stituting collision invariants into (1.3.5) we obtain an equation
of continuity for the components

at ar ¢ it (1.3.12)

an equation of gas motion

—

»> > > > 3
omn V, b om V. om V., »omV (1.3.13)

2_____+_¢i_mopvv_na aa »Toa F77aal o

of 9t gy FEXE et % o % ap,
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and an energy equation
MEo o 3= (3, . 0B, 2z 3E
z +— Y E —-n, ata+°? - a3 | MY (1.3.114)
ar ava.

o HCARPY-

In the next equation E  is the full internal energy of the a-compo- /24

(1.3.,15)

nent molecule:
o2
m_V @in?d
o o
E = —2 %, u,

Let us perform a conversion of the equations obtained.

1. Equation of continuity. If we take into account the fact
that the density of the oa-component py = myn, and we take into
account equations (1.2.4) and (1.2.5) then (1.3.12) reduces to the
form

dp -
@ > )
a t"' + dlv ( pallo + ja)=Rao
(1.3.16)

Summing up the equations (1.3.16) over ala = 1, ,u) and using
(1.2.6) and(1.3.7) we obtain an equation of continuity for the

gas mixture:
g

"P‘+divp-|;o =0

It (1.3.17)

Equation of motion. The first term of (1.3.13) is equal
The second term of the equation:

2.
to zero in virtue of (1.2.6).
e 3 -
d . v d UV .9 .p. s 3
- =D~ L P.3 2Z-oVYV
ga; Pavo.vc. Ea? Po.va,vq, a? a=1 i=laxi Px i o’ (1.3.18)

When converting

where the tensor P is determined by (1.2.186).
the other terms we must take into account the fact that Vg, and r
Thus the equation of motion:

are considered independent variables.
(1.3.19)

9V =+ 3 1 1 F
3tV e s P G eates

Let us introduce the thermodynamic

3. Equation_of energy.
internal energy E necessary for 1 g of the mixture at the moment

of time ¢:

18



= _
-~ el m ” v 3 h
E=x %—, FE S, dv I_pE_”aEa'%<E __“.i"_‘_‘i*,gnaialn?’

o (1.3.20)
and the heat flux [ecf.(1.2.19)]:
- 1 3729 @nﬁ
F=2gmanaVaVo+? noYaul (1.3.201)

IE 3+ 05 02 p.d s s BV 0
p‘T“‘va.‘;E"‘a'Tr.'q*'P a-rb 0 apu.a. o ’ (1.3.21) /25
where
. P k3 > ad?
P:lp-ne ¥V :95. 2 5,VV..20,
ar o of = a=li=1 & oai’ ar; (1.3.22)
Using (1.3.20), (1.2.35) and (1.2.36) we obtain
E:h— EC Hh_ L)
Z Colo /oy =h=Plp (1.3.23)

It is easily shown (using the equation of continuity) that
the substantial derivative

(1.3.24)

Taking into account (1.3.24) let us convert the equation of energy
to the form

—_—
>

d -»> -
dh P+p div ¥ Vg—P: -a—v0+ 2 paF sV - —%-q‘
r

Pdt " d 3

oo

T (1.3.25)

Let us emphasize that the equation of energy (1.3.25) includes the
entire enthalpy of the 2 mixture taking into account the formation
enthalpies of the components. Equations (1.3.16), (1.3.17), (1.3.19)
and (1.3.25) form a system of hydrodynamic equations for the re-
acting gas mixture. These equations include diffusion currents,
heat flux q and the pressure tensor P. To obtain specific standard
working formulas for these values we must solve the Boltzmann
equation. Below we will present a sketch of the method (belonging
to Enskog) for solving the Boltzmann equation. Phenomenological
ties between the stress tensor and the deformation velocity ten-
sor, the heat flux and the temperature gradient remain the same as
in a homogeneous gas, but the coefficlents of viscosity, thermal
conductivity and diffusion depend on the concentrations of all the
gas mixture components.
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In view of the importance of hydrodynamic equations of a re-
acting gas mixture we will give their derivation by balance equa-
tions as 1s usually done in hydrodynamics. In the gas we will
select a certain volume w which is moving at a mean mass velocity

Dg. The current of the mass of the a-component across the volume
surface ag a result of diffusion g, = myn,V,. But according to
(1.2.6) Jog = 0 therefore, in the presence of diffusion the mass
of the selected volume is conserved. Let us also note that §BRo = 0,
since during chemical reactions, the total mass is conserved. /26
Therefore,

4 /1 pdw =0

’&—t*fffp w=0,

dt w (1.3.26)
whence follows the equation of continuity

3P . -»

——+d1v v =0.

ot TP (1.3.27)

It is easy to obtain the equation of continuity for the a-component.
To do this we will write the equation for the conservation of mass
of the oa-component in the volume w in integral form.

d T .32
4 dw = — - nd R
at {{fpa -g]a. n ‘”fwff <, (1.3.28)

here % is the outward normal to the surface ¢ of the volume w.
Using the Gaussian theorem let us obtain

apa . +* 3 1
5T‘+dW(Pav0+1a)=Ra’ a=1lyeee, e (1.3.29)

Summing (1.3.29) over o we obtain, as was to be expeced, the equa-
tion of continuity (1.3.27).

The rates of the formation of the R -components as a result of
chemical reactions, generally depend on the concentrations of ¢
(see Chapter 2, Section 1). Thus, equations of continuity for
components which are written via mass concentrations of separate
components of the mixtures are inhomogeneous as a result of the
presence of homogeneous chemical reactions in the gas flow. Some-
times it is convenient to operate with homogeneous equations. With
the absence of the intranuclear reactions v, homogeneous diffusion
equations for elements where v is the number of elements in the
gas mixture may be obtained from the u equations of continuity. In
fact, since no element is formed nor disappears in the chemical
reactions, then

b oMo

™ =0, (1.3.30)
a=1

R

o
o

20



since nTaMTRa/M is the mass speed of the transfer of an element
T to the composition of the o-material as a result of all the
chemical reactions. Here n;, signifies the number of atoms of
the element T in the composition of the o-component. Thus, the
equation of continuity for the elements will be

9 Beala N 5 7
a‘p§T+dlv§ Ma (Pcavo +ja) = 0.

(1.3.31)

V.A. shvav [5] and Ya. V. Zel'sovich [6], in studying combus- /27
tion processes, included a study of the concentration of elements
for the first time. Liz used this concept for studying heat trans-
fer with the Lewis number L = 1 [7].

The equation of motion for a mixture of reacting gases coincides
with the Navier-Stokes equation of motion for a homogeneous com-
pressible gas. We must emphasize only the fact that the mean mass
velocity of the flow is included in an aerothermochemical equation
of motion. Under normal assumptions with respect to the relation-
ship between the stress tensor and the velocity deformation tensor
we obtain

dl—”o z. I—; d 3 a'?,.
P = N — | 2

dt. apa' o T &M p+ifl axi ! (1.3.32)
- -2 avOi di - .

xii = o ax‘- +2 va' l=1:2’3;

IWo; o,
T = 1 iLi (1.3.33)
%ij “(ax,- Yo, )0 AL
here A = -2/3n, and n is the viscosity of the gas mixture.

Let us look at the equation of energy for the volume w moving
at a mean mass velocity.

+2
d Yo & Fid dw—
aw P<T+E>de={vff§9a Vo dw cf,fp"ond"* (1.3.34)

3., .
ff B %, Dpcosy, dow [x Srdo~ff B j b do-
] L o dn g o=1

Ggi=l

The equation of energy was written in a form similar to the
first law of thermodynamics. The left-hand side of the equation
of energy is the change of the kinetic and internal energy of the
moving volume with respect to time. The first term of the right-
hand side takes into account the work of the mass forces, the second
takes into account the work of the pressure forces, the third the
work of the friction forces, the fourth, the entry of the energy
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into the volume as a result of thermal conductivity and the fifth

as a result of diffusion. It is assumed that all the values are
expressed 1in thermal units. But since, as we already mentioned, the
mass of the volume w moving at a mean mass speed is conserved, a
normal conversion is possible:

v2 29
‘%u{fpl:—éq+€l fﬂ[:—q-%dm fffp_v_+€’dw. (1.3.35)

Converting the integrals over the surface ¢ into integrals over
the volume w by means of the Gaussian theorem, and taking into ac-
count the arbitrariness in the value of the volume w, we obtain

2

d U - N - 3 g * -
— =3 F' - L — .

Par\2 +E> paFaVa dwpv°+i=lt71,- Ty;Vo +

(1.3.386)

+ div(x gradT) - div Ei’aha‘

>
Scalar multiplication of the equation of motion by vy gives

L, dP, B 2 346’:’:,-
Vo i = Z pafarlp ~tygradp+ 2 Ug ox, (1.3.37)

Equation (1.3.36) with the help of (1.38.37) is simplified and re-
duced to the form

0 . > .
xi =P div vy +div(x grad T) - (1.38.38)

o

- divg]aha.,; § poEr Vy o

Using (1.3.24) we obtain

odh_dp 3o

av,
dt dt i=1 x;ax

+div(x grad T) - leZ] h +ZpaF'V (1.3.39)

i

It is not difficult to establish the identity between hydro-
dynamic equations obtained from the kinetic theory of gases and
equations derived phenomenologically. It can be shown that equa-
tions obtained by phenomenological means are free from certain
limiwtions (as, for example, taking into account only two-body
collisions) which are superimposed on the Boltzmann equation. How-
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ever, in fact, transfer coefficients of the gas mixture are ob-
tained by solving the Boltzmann equation. During chemical reactions
triple collisions are important. Below we shall assume that the
equations written out are correct when reactions occur via triple
collisions in the gas mixture (see section 4, subsection 2).

Thus, equations (1.3.27), (1.3.29), (1.3.31), (1.3.32) and
(1.3.39) form a system of aerothermochemical equations which de-
scribe the chemically nonequilibrium nonstationary flow of the gas /29

mixture. Let us write them out together again °.

2 oc, +divlpe Dy+].) =R _; ]
tP ot PCuVg +1g) = K]

3v -+ 3 9%

o x;

p =24 pb d1vv = Ep F, —gradp+ = ;

at "% oo " AP R ox

3 . (1.3.40)
9 P LD
P 3T EC h +P”o gradzc h,= —t+v0gradp+ Bl'cx-?‘+
-»> -+ 3

+div(x grad'I)—-dlvg ’aha.*’f b F eV a=l,..,p. ]

Let us supplement these equations with equations resulting from
equations of continuity for the components:
gas mixture equations of continuity

98  divel, =
at+ PYo

(1.3.41)
equation of continuity for the element
n_«c¢
. Yo (1.3.42)
atEMa+m”M XoC, Do+ o) =05 T =1, v.

4. Enskog Method for Solving the Boltzmann Equation
1. Enskog Method for a Nonreacting Gas Mixture

First let us present a scheme for solving the Boltzmann equa-
tion for a gas mixture in which there are no chemical reactions.
For a gas in a homogeneous stationary state with no external forces
the Boltzmann equation is written in the form

3 TRV f’ -ff)g bdbdedv =0,
1= “(l.4.1)

8Where it will not lead to mlsunderstandlng the subscript "O" for
the mean mass velocity vo will be omitted.
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Applying the Thomson microscopic reversibility principle,
according to which in a state of equilibrium the effect of a col-
lision of each type 1is balanced by the effect of an inverse colli-
sion, we conclude that each term of the sum (1.4.1) must be con-

verted to zero:

fff(f;f; "'fafl)ﬂalbddedi;i = 0, (1.4.2)

The condition f;f; -fgfi (1.4.3)

is necessary (seel[l.4])and sufficient for comverting the integral
(1.4.3) into zero. From (1.4.3) it follows that 1lnf is an addi-

tive invariant of the collisions and if the thermal energy of the
molecules includes only chaotic movement energy we will obtain

Infeall L3 g, o mv 2/2, (1.4.4)

The normal form of the Maxwell distribution function follows [u]
from (1.4.4)

4}

- Y _mdk
- o 2kT
fo "“<2Tu) ¢ . (1.4.5)

Now let the collisions be so frequent that the velocity dis-
tribution is similat ti the lical Maxwell distribution. Then,
following Enskog, let us present the function f, in the form of
the following series:

1 £(0) 1
fa'gfa +f0 sof@ .. (1.4.6)
where 1/8 is a measure of the sollision frequency. Substituting
series (1.4.6) into the Boltzmann equation
afa -» afa fa “ cr or -
+Uy =2z s - . , s LU
3t *Visz —+E; '7.: lfff(faf, fafl)ga,bdbdedvl (1.4.7)

and equating the coefficients with identical powers of &, we obtain

0« zI(f(O) f‘o) (1.4.8)
@ L, a0 , 5@ ©) (1)
x Pys - 3 e - s
D@ . T L ;1[]([,, o)+ (1.4.9)
16O, £

M lD |, el
fg v.L_de -zU(fm’ f(z)
ar "oy

+J(f(l) f“’ ) +I(f(2) I;O) )1,

' D(l)
(1.4.10)
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where the J operator is /31

A1) por) (D) ((r) o
T=g0f, 1 — 1, 18, ;bdbdedv; . (1.%.11)

Equations (1.4.8) - (1.4.10) are obtalned by equating the coeffici-
ents respectively with 1/62 1/6 and §9 Equations of the type
(1.4.8) - (1.4.10) are much simpler than the initial Boltzmann
equation since they are linear integral equ?i%ons. Let us note
that the left-hand side of the equations (D operators) is known
from the preceding approximation. Solving the equation of the
first approximation (1.#.8) is the same as solving a Maxwell dis-

tribution. If we require that the conditions be fulfilled:
0
rf40, <n, (1.4.12)
0 .

Zmg S, fi)d"«’=96°’ (1.4.13)

o2

m.V,

D[S f db, - 3 nnkT,

a. o (1.4.14)

then the first approximation coincides with the distribution func-
tion which corresponds to the local Maxwell distribution. Obvi-
ously then the distribution functions of the following approxima-
tions must satisfy the conditions:

ff(ak)dl-;aso; (1.4%.15)

k)
Zm fv ﬂ =); (1.4.186)

zm, [ V:fg"’dﬁa -0, k=1,2,...
o (1.4.17)

In books by Chapman and Cowling [1] and Hirshfelder it was shown
that the conditions in (1.4.15) - (1.4.17) are iuff1c1ent for the
single-valued determination of the functions f (k > 1). Chap-
man and Cowling solved integral equatlons by expandlng the unknown
integrands into a Sonin polynomial series which are suitable as a
result of their orthogonality conditions [1]. The solution to the
obtained system of linear algebraic equations of an infinite series
on the basis of the Cramer rule is in the form of a ratio of
determinants of the infinite series. The determinants converge rap-
idly with an increase in the number of approximation, and usually
the second approximation is sufficient for determining the transfer
coefficients (in addition to the thermodiffusion coefficient).

These calculations are very tedious. Their detailed presentation /32
is contained in the above-mentioned works [1,43. Therefore we will
give below (Chapter 1, Section 5) only the specific formulas for
calculating transfer coefficients.
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2. Enskog Method for a Reacting Gas Mixture

Up until now the Boltzmann equation for a case when chemical
reactions occur in a gas has not been solve. However, Prigogine
[8,9] studied the perturbation of the Maxwell distribution function
in a homogenous gas as a result of the occurrence of chemical reac-
tions of a special type. Let us give some definitions. As we have
already mentioned all the elementary processes of gas reaction in
a gas can be divided into 3 groups (using terminology from works
by Prigogine [8,9]: (1) elastic processes; (2) superelastic pro-
cesses and (3) inelastic processes. Let us distinguish these
groups in the following way:

(1) Those processes as a result of which the sum of the kinetic
energies of the particles does not change are called elastic pro-
cesses.

(2) 1Inelastic processes are those which result in a decrease
of the kinetic energies of the centers of gravity of the particles
after a reaction.

(%) Superelastic processes are those which result in an in-
crease of the sum of the kinetic energies of the centers of gravity
of the partners after the reaction.

As an example let us examine an excitation reaction of the
type

Ay +B==A, +B. (1.4.1)

The discussion given below is easily transferred to reactions
of the type

A+B=C.+D,

(1.u.1')
Let us write the law of conservation of mass
m =mMm
4, 4, (1.4.18)
of momentum
.ﬁ -»> > >, o ,+m )é
Mqls, +MpUp = MV4, +MpVp = MATTET?s (1.4.19)
of energy
2 1 2 1 +2 1 +,2
“4,+l§m47’4,+§m37’8 =Hy +gmVy +5MpYB (1.4.20)

where uAO and uy_ are electron energies of the molecules 4g and 4.
1

Let us introduce the relative velocities of the colliding particles:
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; (1.4.21) /33
b, —Vg =8 (1.4.22)

Then from (1.4.19), (1.4.21) and (1.4.22) it follows:

- m P4 m -»
D B -’. b l:G— s
v"°=G+"'A+”’BB' Vg Mg 8 (1.4.23)
m m
-» A B . 3 - A=,
vAl G+"’?A+_,.—ég) vB"‘é mA_'_mBg (1.4.24)

Equations (1.4.23) and (1.4.24) give us a concept of particle veloci-
ties via the velocity of the center of the masses and relative to

the velocity of the colliding particles. Using (1.4.23) and (l.4.24)
let us reduce the equation of energy (1.4.20) to the form

m,m
%ﬁ;—%‘;(gz—gdh% ~4, . (1.4.25)
1 )

Thus, the difference in the relative kinetic energies of the colli-
ding particles equals the difference in the potential energies., If
we assume that there is no molecular rotation or vibration or if

we disregard their effect then u, and uy represent the formation
enthalpies at 0°K, and consequently the heat @ of the reaction
(1.4.1) is determined from the equation

0 0
hﬁ.—hd.’—Ql' (1.4.26)

If we symbolize the relative kinetic energy of the molecules prior
to and after collision by n and n' respectively and the difference
in potential energies by nj;2, the equation of energy (1.4.25) is
rewritten in the form

a-1"=1,=-Q,. (1.4.27)
Let njp2 > 0 (the reaction is endothermic). Then inelastic collisions
occur, if

— > .
2”',4“"88 2%, (1.4.28)

L]
The inequality (1.4.28) is the limitation superimposed on the
initial relative molecular velocity. Superelastic collisions
(ni2 < 0, exothermic reactions) occurs at all positive values of n.

Let us symbolize the probability of an inelastic collision by /34
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o%(g) and the probability of a superelastic collision by o#®%(g’).
And let us assume that reaction (1.4.1) going from left to right is
endothermic. Let us find the bond which must exist between the
functions o% and o%%* for the principle of microscopic reversibility
to be satisfied. The number of 4y molecules per unit volume (whose
velocity is 7A0: d?AO) which leave the region of dﬁAo velocities

per unit of time as a result of inelastic collisions with B molecules
and whose velocites are 33, d?B , will be

onfBo gbdbdedvAodJB. (1.8.29)

The number of Ap molecules with velocities of 3 > dﬁA which
appear per unit volume per unit of time as a resﬁlt ofosuperelastlc
collisions between A; molecules (whose velocities are 3A1, dﬁAl)

and B molecules (velocities 3! ,dg' ) will be
fA fB'c" ‘b'db’de dU dUB. (1.4.30)
1

The following relationship exists between the relative velocity
of g-molecules prior to an inelastic collision and their relative

kinetic energy:

g=an’, (1.4.31)
where
a=2(m,+m,)/m m,,
A"TETTATE (1.4.32)
A similar relatlonshlp exists between g' and n' Let us convert
dﬁAOde and d§A1 as’ p using (1.4.23) and (.4. 24)
i, diy = dGdg - a2dedgdG - 3 o’ n % dndedG; (1.%.33)
dily di-dG dg"- g"*dedg’dG’ = { 0¥’ *dn’dad, (1.4.34)

’

where d2 is an element of the solid angle.

From laws of the conservation of momentum (1.4.19) and the
conservation of energy (1.4.27) it follows accordingly

4G - dG’; (1.4.35)
dn =dn’. (1.4.36)

Finally similar geometric collision parameters can be chosen. Then
as a result of (1.4.33) - (1.4.36) [ef.(1.1.28)]

28



- % - " .
dvA dip =1 dvA,dvg (1.4.37) /35

Applying (1.%.29) and (1.4.30) let us find the information velocity
KAodﬁAo of the Ag molecules (whose veloclity is in the range Ao,d§A0

as a result of the chemical reaction (1l.u%.1):

Ky, =fff(f,4‘fé°" 1—1]— ~f4, fgc‘) 84 gbdbdedig . (1.4.38)

With equilibrium due to the principle of microscopic reversibility
this expression must be identically equal to zero. If we substitute
the Maxwell distribution functions, then from (1.4.38) it follows

(1.4.39)

This is the desired relationship between the functions ¢% and o¥*%,

The equation for determining the reaction rate:

% Tl -» -»
Ry =me Iy fgo =f4 fgo’ )84 gbdbdedipdi, . (1.4.40)

Now it is easy to write the integral-differential Boltzmann equa-
tion for the case being studied:

Mo 3 Wiy 2 o (I fel)  Ala) Pl
a Aod;+AoavA ot '\ 9t A!’“ at pat ) (1.4.41)

where the first three terms represent elastic collisions with
Ao, A7 and B molecules, respectively.

@f, /o0, = <] f~f,f)og, bbdedd, =J(ff, ) (1.4.42)
(@f,,n/at),{fﬂf(&; i PRIRL YW bdbdedﬂAfI(on £ (1.4.43)
Ofy, /o0~ D15 §5~F4 Tp) o8y gbdbediiy = J(f, fo); (1.4 48

(6&' /at)r - ﬂf(f,i f' *s _’:{ode. )ngBbdbde‘!ﬁ‘g:CAo(&ofB). (1.4.45)
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Let us assume that o¥% depends on the relative kinetic energy
of the molecules. Let

» - 2
S (1.4.u46)
where a is the parameter depending on the activation energy. By
activation energy we mean that minimum energy which colliding par-
ticles must possess in order to enter a chemical reaction. We will
say more about this in detail in the second chapter, but now let

us say only that condition (1.4.46) is not the only one of the pos-
sible conditions. In fact, we may assume that:

o =0 with 4 <8¢ }

G‘:lwith gzgoo (l.LI'.LI'?)

Condition (1.4%.46), as we can easily see, gives for ¢%* a value
equal to 0 at g =+ 0 and o1 at g>w .

In Fig. 38 the dependence of the potential
molecular energy on the reaction coordinate
is represented. Also the activation energy E¥*
of a direct endothermic reaction and of an in-
verse exothermic reaction is indicated (with-
out taking into account quantum effects). As
Wwe can easily see from Figure 3

Potential
energy

Reaction coordinate

* LEJ
Fig. 3. E"-E +Q, . (1.4.48)
In Prigogine's paper [8] an evaluation of the perturbation of the
Maxwell function as a result of the reaction (1.4.1) was obtained
by the Enskog method:

-3

Y myV
f sy "y ze—'—_thTY_qI_ 15 oY G2,
Y 16 = Y\2rnkT E*\* 2kT Y
(1.4.49)

m, \2 »
Y . ~
+<2kT> VY)IAOIB’ Y=A0,A1,B, IY—nY/EnY.

Finally, let us find the reaction rate (1.4.1) in the simple
case when a reaction is just beginning and the concentration of
the A; molecules can be disregarded. In this case the reaction

rate [see (1.4.40)1]

RAI’ = -)ﬂAoffffon fBo.ngBbdbdsdi.)B dl-):4° ] (l . Ll‘ . 50 )
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If we symbolize the value of ?B? reaction rate which corresponds to /37
the Maxwell distribution by RA
Q

, then

- o(0) .
Ry, =Ry (1ed2xy x5Q/E ). (1.4.51)

From (1.4.51) we see that for an exothermic reaction (§; > 0 is an
inverse reaction in our case) the perturbation of the balanced dis-
tribution increases the reaction rate. This increase is greater

the larger the ratio of the heat of reaction to the activation energy.
Conversely, for an endothermic reaction (the direct reaction in

our case) the rate will decrease. But the heat ¢; of the endother-

mic reaction can not become larger, with respect to absolute wvalue,
than the activation energy F®*. Therefore, the maximum decrease is
~[1 - 1.2 x4 xgJand does not exceed 25%. On the contrary, for

an exothermic Peaction there is no upper limit of this effect.

Let us study another example. Let a chemical reaction take
place in a gas which was initially in a stationary uniform state

A+A—-B;C, L 4.I1)

Let us assume that the reaction is just beginning so that we can
disregard all the collisions between A and B or A and C. Let o¥®
be the probability of an inelastic collision of the A molecules.
And we may disregard the heat of reaction (1l.4.11). The contribu-
tion of elastic collisions to df/dt is determined by the equation

[F F f7 ~ff)(1=c")gbdbded |, 152

and of inelastic collisions

- [f §f o’gbdbded ¥ . (1.4.53)

Since the heat of reaction (l.4.11) is assumed to be negligibly
small ¢%* has the same value for direct and inverse collisions.
Thus the Boltzmann equations:

o . of 2
Lo T BT L (s~ ygbdbdeds, -

at ar o (1.4.58)
~ 11f §{ f*a"gbdbded?, . .

For the case (1.4.46) an estimation of the perturbation func-
tion f(l) has the form [9]
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my

(n m Yt TIET 45 kT [, 4 22 4 24 (1.4.55)
f = n<2nk,r> [ %?é—g‘v +EV .
The reaction rate 38
= —my [ff{f"f /o" gbdbd edv), di. (1.4.56)
For the case in (1l.4.46)
) 9 kT
R=R (I—EEE ) (1.4.57)
where R(0) is the reaction rate in the assumption of the Maxwell
distribution. From (1.4.55) it is evident that the change in re-
action speed and the perturbation function f(l) are small for the
normal values of E%/kT. Even for E%/kt ~ 5 the error committed as

a result of using B(0) instead of B is on the order of 1%.

For the case of (1.4.47)

@] 1 EaT(E'V(EY B 17
R-R {‘ 32° (ﬁ)[c?f) ST [ (1.4.58)

Let us compare this formula with (1.4.57). The reaction rates
depend substantially on the choice of the function o¥%. For
E*/kt = 5 (1.4.58) yields

R =o0.778(0)

This decrease in R now is ~ 20% in comparison with 1% from (1.4.57).
The precise value of R depends on the analytical form of o% which
must be obtained from quantum chemistry. As yet no such calcula-
tions for reactions of practical interest have been made.

Thus, at least for the 1lst and 2nd types of reactions which
we have studied perturbation of the distribution function is not

great, if
RT/E” «1, |G/E*|<« 1. (1.4.59)

Let us assume that the conditions of (1.4.59) determine the pertur-
bation of the distribution function for all types of reactions.
Therefore, if the conditions of (1.4.59) are carried out, in the
calculations we can use the transfer coefficients for the nonreact-
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ing gas mixture. As an example let us examine the dissociation
reaction

2220; ( )

—o . 1.4,ITT
N, ==2N; (1.4.1V)
NC ==N+0. (1.4.V)

The first of the conditions of (1.4.59) can be rewritten in the
form

E*/k >> T
Then /39
Reaction E%. kCal/mole E*/k,°K
(1.4.111) 118 59,400
(1.4.1V) 225 113,000
(1.4.v) 150 75,000

Thus, the characteristic temperatures for E*/k are usually
substantially higher than the maximum temperatures studied in aero-
thermochemistry ( =~ 10,000° - 12,000°K). The second of the condi-
tions of (1.4.59) is not carried out as well, since generally the
heats of chemical reactions are comparable, with respect to order
of magnitude, with the activation energy. Nevertheless, everywhere
below the transferable properties of the gas will be calculated on
the basis of formulas for a nonreacting gas mixture.

8. Influence of Internal Degrees of Freedom on the
Trans fer Phenomenon.

So far we have assumed that internal and translational degrees
of freedom are energetically balanced. However, if in a gas the
balanced energy distribution with respect to degrees of freedom is
destroyed (a typical case is the passage of the gas through a strong
shock wave) then different degrees of molecular freedom take a
different time to come into equilibrium (which is called the re-
laxation time) or likewise they come into equilibrium at a dif-
ferent characteristic distance (which is called the relation dis-
tance). This is due to the fact that in order to establish equilib-
rium in the translational degrees of freedom only some collisions
are required (hence follows in particular the faect that the width
of the shock wave is of the order of the length of the free molecu-
lar path) and the rotational degrees of freedom are balanced every
10-50 collisions. Finally, the Maxwell distribution in the energy
spectrum of vibrational degrees of freedom is established for a
greater number of collisions (up to 5000). Thus, the rate of
rotational energy transfer during molecular collisions 1s comparable
to the rate of translational energy transfer. However, for vibra-
tional degrees of freedom to be energetically balanced with the
transitional degrees, 10%* - 5.10% collisions are required. If L is
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the characteristic length of the streamlined material, Zt and 7,

are the relaxation lengths of the translational and 1nternal degrees
of freedom, respectively, and Zt is the length of equilibrium
established between the translation and internal degrees of freedom,
then we can separate out the following cases of streamline flow:

(1y 2z~ 17 lg;>>L represent the "frozen" flows: /40
(2) Zt Z$ lt;<<L represent the "quasi-equilibrium" single
temperature flows. In this case the relaxation phenomena occur via

the mechanism of volumetric (or as it is called-second) viscosity;

(8) Tyg<<ly~ lgy~L is the so-called relaxation of the mixture
[101].

(4) 14 ~1l;<<ly;~ [ represents the two-temperature relaxation.
This case corresponds, for example, to the physically realistic
process when the equilibrium between the translational and vibra-
tional degrees of freedom is established much more slowly than
within the respective degrees of freedom. The two-temperature re-
laxation was studied in detail in papers by V.N. Zhigulev [11] and
V.M. Kuznetsov [12].

We can easily take into account the contribution of the inter-
nal degrees of molecular freedom to heat transfer if the rate of
energy transfer from the Iinternal to the translational degrees of
molecular freedom is so great that the balanced distribution of
energy is established with respect to the degrees of molecular
freedom and corresponds to the local temperature.

Let there be a gas whose molecules can be found in various
quantum states of N;. We will look at all the quantum states of
molecules as separate chemical materials. The density of the
energy flux in second approximation is determined by the formula

w)aT+E b . V
ar j it (1.4.60)

g =
where k(%) is the coefficient of thermal conductivity of the gas
when the molecules do not have internal degrees of freedom. In
writing (1.4.60) we have taken into account the fact that in a good
approximation the internal molecular energy (not as a result of

the translaticnal motion) does not depend on velocity. But
hj = ng + Ej(lnt) [see (1.2.35)]. 1If we allow for the fact that

for electron-unexcited molecules the coefficients of diffusion are
the same irrespective of the gquantum state, then

3
V‘ = —-E. _a_ n'
P=mi Dos (#— , (1.4.61)

where D is the coefficient of self-diffusion (see section 5 of this
chapter).

Let us use z; = nj/n. Then using (1.4.61) we can rewrite
(1.4.60) in the form
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q=-69 +nD,;h,-ag- /aTYoT/a¥F.

(1.4.62)
Thus
x = x®" L nDzh;ax;/dT.
P R (1.4.63)
The enthalpy of the gas mixture is determined by the equation
Ha;‘;x,- h]-,
and the heat capacity at a constant pressure,
d dh; ox;j
€ =——3xh,=nx,~~4+35h, —L .
PTAT ;T NAT T AT (1.4.64)
The first term in (1.4.64) is the specific heat of the gas if the
molequles do not have internal degrees of freedom, i.e., % k. Thus ,

0= (@) + nD( <o —5k/2).

(1.4.65)
Let us introduce the dimensionless parameter
5, - 3% BD_
72 ,©° (1.4.66)
then
n/n(0)=(l~8f)+52TcP6f' (1.4.67)

The right-hand term of (1.4.67) is the so-called Eucken correction
for the internal degrees of molecular freedom. Hirshfelder [13]

found that for the Lennard-Jones potential and the Buckingham po-
tential 6f = 0.885 within 2% (Eucken himself found a value of 2/3

for Gf from very simplified representations). Thus

x = (9 (0,115 + 0,354, /k). (1.4.68)

5. Molecular Transfer Coefficients

The molecular transfer coefficients given below were obtained
by solving the Boltzmann equation during whose derivation it was

assumed that the molecular diameter is small in comparison with

the mean distance between the molecules and triple collisions were
not studied. These assumptions are correct only for rarefled gases.
Also, generally, rather precise expressions for the coefficients

are obtained in assuming that the gas is monatomic. However,

as
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we already mentioned the internal degrees of freedom exert a very /u2
small influence on the coefficients of diffusion and shear viscosity
although in calculating the coefficient of thermal conductivity we
must take intc account the internal degrees of molecular freedom.
During the flow of a chemically reacting gas, triple molecular
collisions can be very substantial (as we know, recombination re-
actions go through triple collisions). Therefore, the formulas

used below for the transfer coefficients and for the gas flows in
which reactions going through triple collisions occur are considered
formally correct. This assumption is justified by the fact that
molecular collisions which lead to chemical reactions are relatively
rare and do not lead to a substantial distortion of the distribution
function (see Section 4, subsection 2). Thus, the results obtained
have a wider range of applicability than follows from theory. Let
us also note that the strict kinetic theory of dense gases and
fluids has been significantly less developed than the theory of
rarefied gases. Thevrefore, we must use molecular transfer coeffi-
cients for rarefied gases. However, it has been empirically es-
tablished that, for example, the formula relating diffusion currents
to concentration gradients of multicomponent mixtures (given in

the theory of rarefied gases) is quite appropriate for dense gases
and fluids [see (1.5.6), subsection 11].

1. Diffusion Coefficients

The diffusion coefficients of a multicomponent mixture can be
obtained in good approximation by taking into account only one term
in a Sonin polynomial expansion:

> 2 b
o= 2 M aMpbapd g (1.5.1)

_ ()(ﬁ "6"‘B>61np
ﬁ ar ) (1.5.2)

In (1.5.1) and (1.5.2) thermodiffusion whose influence is con-
sidered below as unimportant and the effect of external forces is

disregarded

FBo_fpoe
lagely = o,
“F m g Fl (1.5.3)
where |F| is the determinant from Fyg,and FB® is its minor: /43
n men
Fyp= 5+ o - (1.5.4)
P aﬁ l=lpmaDaI
I 4a
F. -o. (1.5.5)
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Below, in presenting numerical calculations in the scope of
boundary layer theory, we need a dimensionless form of these
equations in Dorodnitsyn variables [see (3.2.6)]:

= A T - |
L ~Cy = ;
= b ezluﬁA“p[cm‘oﬁlc“ Cﬁaﬂc“{l (1.5.6)
A _Zpa_zaa

oapf ’

MplZ] (1.5.7)

where the IZI is the determinant
i, Zyg, cees zy,
Zyps 0, eee, Zy,

Zyy Zugs e 0 .

Elements of this determinant are determined by the formulas

Ek
L * (1.5.8)

Ol
Z

« B
Zap = T M

‘LHM'F

k
* K

Here and below, a line means that the pertinent value which charac-
terizes the a-component of the gas mixture refers to the molecular
weight M,. Also, we introduce the designation

zaﬁ==Faﬁn/NpCP

(1.5.9)
Aypg represents the generalized Lewis coefficients and Lgpg is the
Lewis number formed with the help of binary diffusion coefficlents,
i.e.,

pC
Aap= 5 8api  Lap="—5"Dope

In deriving (1.5.6) barodiffusion, whose influence in the becundary
layer is small in comparison with the concentration diffusion,

is disregarded. As we can easily see, calculating diffusion cur-

rents in final analysis amounts to calculating diffusion currents Vi
of a binary mixture.

In first approximation the blnary diffusion coefficient Dypg

(in cm?/sec) for nonpolar gases is independent of the a and B-
component concentrations and is determined by the equation
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o (1.5.10)

3 ” 2 (1) .
D, = 00026280V T XM TH VM M oo 20" (1)
In (1.5.10) p is the pressure in atm., T is the temperature, in
°K, parameter g,g is the diameter of collisions for the a and B
molecules, in and Q(é'l)* is the dimensionless integral whose
value depends on the gynamics of two-body collisions and, therefore,
on the law of intermolecular forces (more will be said about this
in detail below). The highest approximations of Dyg are very
slightly distinguished from the first:

D - (k)
Dapl, =1 “p]‘f”ap (1.5.11)
(k)

where for the Lennard-Jones potential the function fD g for the
o

majority of binary mixtures has values from 1.00 to 1,03 [u4].

Note. As we can easily see, calculating the diffusion current
of the o-component involves finding the value of the determinant
of the uth order. Sometimes it is more convenient to use the rela-

tionship between the currents and the gradiants of the concentra-
tions in the form

Cg b i jon v €, oT
e an lgn a B B_ g B
- - z = Z Cya—Cgz— Z C,»
os B of B
In writing (1.5.12) the thermodiffusion has been disregarded and
the approximation of the boundary layer used. Let us note that

the accuracy of the equations in (1.5.12) is the same as in (1.5.6).
2., Viscosity Coefficient

In first approximation the viscosity coefficient is expressed
in the form of the ratio of the u + 1 determinants and the u-th
orders. But since the off-diagonal elements of the determinants
are small in comparison with the diagonal elements it 1s possible
to use the following formula in good approximation

o - (1,1) »
R G Qp M,
n= z Ci ;+2¢308 kZ‘. n———mﬂ——
=1 g gzi eyt Mttt (1.5.13)

The coefficient 2.308 was obtained by Buddenberg and Wilke (in- /45
stead of 10/3 obtained in (1.5.13) in the above approximation) on —
the basis of analyzing experimental data [14]. For pure nonpolar
gases the first approximation for the viscosity coefficient gives
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2 (2,2)
n; = 0000026693 VM, Tfo; 0. %" ,

where n; is expressed in g/cmesec. Here ct(ls he diameter for
the collisions of the i-components and <, % is the integral
of collisions versus the parameter

? SkT/.si »
(1.5.14)

The following was obtained for the coefficient ngg in first

approximation
(2.2)0
| ~0,000026693y/2M; M T/ (M Mg (T

(1.5.15)

3. Thermal Conductivity Coefficient

The thermal conductivity coefficient for a gas mixture is cal-
culated even in first approximation from very complex formulas.
Mason and Saxena [15] obtained a much simpler formula for calcula-
ting the thermal conductivity coefficient of the mixture. Its
derivation is similar to the derivation of the Budenberg and Wilke
formula for the viscosity coefficient. Moor and Zlotnik [16] note
that the correspondence with experimental data is completely satis-
factory and almost better than that obtained on the basis of pre-
cise theory.

®

c—k
X= X L¥ 1+ E G ,
im] k=1 i (1.5.,16)
ELi
-1 1, -
2 YR 2
VI O\ M, 0/ \ My (1.5.17)

Here Kéo) is the thermal conductivity of the pure gas with frozen
internal degrees of freedom and ¥; is calculated on the basis of
a formula taking into account the Eucken correction

x, = %0 (0,115 +0,354¢ ; /R). (1.5.18)

Let us present other formulas for calculating the thermal conduc- /46
tivity coefficient of a pure gas:
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VM, T

(0} H; 15
x; ' =0,00019891 —— ¢~ _Tilsp
i ’ 2 (2,2 I T
Mo > Y+ M, (1.5.19)

Let us look at the uniformity of the values in the above for-
mulas (1.5.16) - (1.5.19): x: is measured in cal/cm-sec-deg epg is
in cal/mole+deg, R = 1.98646 cal/mole+deg, and the uniformity of

n{ in g/cm.sec.

4. Collision Integrals and Potential Energy Parameters

To determine the transfer coefficients we must know the poten-
tial energy parameters of molecules ¢;.; and Eij/k which character-
ize the reaction of % and j-type molecules. For a pure nonpolar gas
the potential ¢(r) of molecular reaction as a function of the dis-
tance between the centers of the molecules can be determined by

the equation:
6
@(r) = 4e; Uo; /D2 = (0; /)10 (1.5.20)

The function ¢(r) determined by (1.5.20) is called the Lennard-
Jones potential. Figure 4 represents the Lennard-Jones potential
and also indicates the molecular reaction parameters.

The o447 and e{j force constants must be
obtained generally from experiment. However,
such measurements of the reaction between two
nonidentical molecules do not exist and in
practice we must use empirical "combination
rules™ which relate force constants of identical
molecules to the force constants of nonidenti-
cal molecules. These rules have the form:

aj = bloy vap;
n ’ (1.5.21)

eij =Ve;e;. (1.5.22)

Unfortunately, at the present time the force constants of atoms
has not been studied very extensively. Hirshfelder and Eliason
[17] established empirically that the diameter of an atomic colli-
sion ig double the mean radius ¥ of the electron which is found in

the outermost orbit, plus 1.8
— o
G=2'+1,8Aa (l 5 23)

The value of r is calculated on the basis of the Slater screening /47

constants

1 s .
T =gzn" (" +1(Z-S)a,, (1.5.24)
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where Z is the atomic number n® is the effective principal quantum
number of the outermost shell, S 1is the Slater screening constant
for this shell, ay is the radius of the Bohr orbit.

The values of e: for atomic components are not known. We
were compelled to determine them with numerial calculations of

interpolations on the basis of the molecular weights of inert gases.

Thus, values for e; were obtained for atoms of carbon, nitrogen

and oxygen. In Table 3 constants of the reaction forces of certain
types of molecules and atoms for the Lennard-Jones potential are
given. More complete data can be found in the work by Hirshfelder,
et al., [u4].

TABLE 3
Gas e/k,°K o, A
Ne, M = 20,2 27,5 2,858
Ar, M = 39,9 116,0 3,465
Kr, M = 83,8 190,0 3,81
Xe, M = 131,3 229,0 4,055
N,y 79,8 3,749
0, 88,0 3,541
co 85,0 3,708
CO, 213,0 3,807
NO 91,0 3,599
N,O 237,0 3,818
i - 3,38
C - 3,42
hY - 2,88
0 - 2,96
CN 115 3,5 L A 7o
C, 150 3.8

Fig. 5

The integrals fl-1)% ang 0€2-2)% ape included in the expres-
sion for the transfe?’coefficien¥d of pure gases and mixtures
(the exception is the thermodiffusion coefficient). The physical
sense of these integrals lies in the fact that they point out
the distinction between the molecular model used and the solid

sphere model. For solid spheres all the values for Q(@,S)* = 1,

p d
In Figure 5 the collision integrals Q%é‘l)k and Q£§'23* are drawn
as functions of log 10 T:. for the Lennard'Jones model. For other

.': .
reaction models Qé}’s)' integrals are tabulated in the Hirshfelder
book [4] in the form of a function of kT/ezj.

b1
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CHAPTER 2
ELEMENTS OF CHEMICAL KINETICS

The system of aerothermochemical equations (1.3.40)-(1.3.42)
includes the formation rates Ry, of the a-component (o = 1,...,u)
as a result of all the reactions in the gas phase. In practice,
for the purposes of aerodynamics in calculating the flows with
chemical reactions it is enough to know the numerical values of
the so-called chemical reaction rate const@ants. Up until the present
time analytical methods of theoretical chemistry have not permitted
cilculating reaction rate constants, and experiments have been the
basic source of information on reaction rates. Therefore below
we will give mainly only the most necessary information from phenom-
enological chemical kinetics.

1. Phenomenological Chemical Kinetics of Homogeneous
Gas Chemical Reactions

First let us give some formal symbols and definitiomns. 1In
chemistry the following definitions of the concentration of compo-
nents in a gas mixture are often used: ¢, is the mass concentration

a
of the component:

Co = Pa/p = Pa/ZPq = mana/ﬁma"a’
@ (2.1.1)

Wy is the number of moles of the a-component per unit volume of
the mixture:

w,o=p /M_.
@ = fa/la (2.1.2)

Therefore,

w =C /h’ = E .
a = CabBa= pPly (2.1.3)

The following formula gives the total number of moles of all the
components per unit volume

W=23w = EC-.
a o~ Pgtla (2.1.4)

b2
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By analogy with (2.1.2) let us determine the molecular weight 50
of the mixture on the basis of the formula

Msw/pal/gé'a. (2.1.5)

Xy is the mole fraction of the oa-component (number of moles of the
a-component per mole of mixture)

To =Wo 0= Eof BEar (2.1.6)

Below on the whole we will use the concentrations ¢ég. Obvicusly
for ¢4 and xy the following equations are satisfied:

R B
2 c =1, z xaal. (2.1.7)

Finally, the equation of state in the ¢, concentrations is written
as follows:

P, =N kT = pRTC, ; (2.1.8)

P = zp, - eRTZc,, (2.1.9)
where R is the gas constant (R = kN = 1.986u46 Cal/mole-.deg).

The general stoichiometric equation which describes a reaction
occurring at one stage can be represented in the form

m e,
ailVaAa—v—azlvaAa. (2-1.10)

Thus, if the chemical-component, represented in (2.1.10) by
the symbol 4,, is not the original material (the reaction product),

then vj = 0 (vy = 0). Let us now list the components (chemical
elements and materials) which we will study below in the numerical
calculations of gas flows with chemical reactions: A4A; = C, 4 = CO,

Az = CO2, Ay = 0, Ag = 09, Ag = N, A7 = No, Ag = NO. For example,
let the following reaction take place

0y — 20. (2.1.1)
Then I ”, » ”, ’ ” » 0 ”
= = = = = = = y =1
Vl Vz— V3 V4 V6 V7 Vs » 5
rd e 4 ll_ re » »” "=2
vl=v2=v3=v5_v6av7_v8=0, vy .

If we look at the effective chemical reaction which in fact takes
Place in several stages the coefficients vj,v§ can not be whole
numbers.
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The law of mass action is the basic law of phenomenological /51
chemical kinetics. It is physically obvious that only colliding -
molecules reat. The number of collisions is proportional to the
number of molecules per unit volume, and therefore to the concentra-
tion of the initial materials:

D ryd ’ [ vi’
Raz(va —Va)kfjillwi . (2.1.11)

The expression given for the formation rate of the a-component
is the basic postulate of chemical kineties. In (2.1.11) kr is
the chemical reaction rate constant. In general, the rate constant
ke is proportional to the number of collisions of molecules whose
ehergy is equal to or more than the energy E (the activation
energy). As a rule, we must also introduce the factor p (the steric
factor). The coefficient p takes into account the three-dimensional
obstacles to the occurrence of a reaction., Its value in different
reactions may fluctuate in the range from 1 to 10-8 [19]. If in a
gas, there is a molecular distribution with respect to energies
that is not very different from the Maxwell distribution, then

Z, =Ze ERT (2.1.12)

where Z, is the number of collisions of molecules whose energy is
equal to or more than F, and Z is the total number of collisions

per unit time per unit volume. Thus,
kf-pza. (2.1.13)
But the total number of collisions in the gas is proportional to
YT. Therefore, the general form of expression for the rate constant
will be
k =-BTﬁe~E/RT
f (2.1.14)

The temperature dependence of the pre-exponential term is often
different from the theoretical value 0.5 for the best correspon-

dence with experimental data. Let us go into more detail about the
concept of activation energy. Let there take place a reaction in
the gas

AB+C —™ A+ BC.

The relative distribution of the 4B molecule and the ¢ atom is

given in Figure 6. At great distances p, the atom (¢ does not react
with the molecule AB and the potential energy of the system ABp + ¢ /52
is equal to the potential energy of the AB molecule. The curve of -
the dependence of the potential energy of AB on the distance be-

tween the atoms has the form given in Figure 7. The atom 4 is

found at the origin of the coordinates and the nucleus of the other
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atom may be found at any distance provided that rj; << rz. The
potential energy curve, as usual, has a deep minimum which repre-
sents the equilibrium distance r,, between the atoms in AB. Let
us call this minimum the zero potential energy of the system.
Having a potential curve on the basis of (2.1.15) we can easily
construct a curve of the dependence of force F; on the distance
between the atoms:

Fy = —du,/dr,.

QA (2.1.15)
N\ 8
’Qgifﬂﬁ::% The shape of the curve Fi(»r;) reflects
B C the known fact that at great distances
atoms attract and at small distances they
repel. Atoms in a bivalent molecule can
Fig. 6 vibrate at definite frequencies whose
magnitude is determined from gquantum
mechanics. In Figure 7, the gquantum vi-

brational level for AB is given beginning
with the zero vibrational level found

at a distance 1/2hv from the minimum
level of potential energy. For the =zero
level, for example only at distances

r1 = OK and r; = OL, the entire energy
of the system is potential. At other
distances it accumulates from the poten-
tial and kinetic energy of the system
(besides the distance rj, where all the
energy is kinetic).

Let the reaction take place and let
atom A move away a distance »r; >> rjp.
Then the potential energy U; of the
system accumulates from the potential
energy of the molecule BC(C. In Figure 8 two hypothetical curves of
the dependence of the potential energies U; and Uy on the distance
between the atoms are drawn. Let the transfer from the zZero vibra-
tional level to the zero level occur. From Figure 8 it is evident
that to transfer through the potential barrier, atom C must have
energy no less than the activation energy E. The change in poten-
tial energy of the system of atoms A4,B,C along the reaction
coordinate »r is given in Figure 9. The area § represents the tran-
sition state. From Figure 9 it is evident that the transition from
state AB + C to state BC + A is possible only with energy F; and
the reverse transition is possible only with energy Es. With the
occurrence of a reaction in a forward direction the following
amount of energy is extracted.

~
(8]
w

Q - E, -E,. (2.1.16)
In this case ¢ < 0, the energy is absorbed and, therefore, the for-

ward reaction is endothermic. Let us note that 1f there 1is a
reaction in a gas at a constant pressure, then on the basis of the
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Hess law the heat of reaction @ is equal to the difference in the
enthalpies of the initial and final reaction products, i.e.,

Qp =hy ~h,. (2.1.17)

u

AB+C r

Fig. 9

Continuing the presentation of phenomenological chemical
kinetics let us give some definitions.

1. We will always consider a reaction going from left to
right, in accordance with (2.1.10), a forward reaction and we will
use for its rate constant the generally accepted symbol kr. For
back reactions, going from right to left, kp is the usual symbol
for the rate constant.

2., In (2.1.11) the coefficients v! determine the order of a
forward reaction with respect to the vilue .

3. The following is the total order of a forward reaction

4
m’: p V’.,
jor (2.1.18)

the order of a back reaction is

p ~
m’= v

j=1 1 (2.1.19)
For example, for the reaction (2.1.I) the order of a forward re- /54
action on the basis of oxygen 0O, is equal to one and is simultaneously
the total order of a forward reaction. Along with a forward re-

action there always occurs a reaction in the reverse direction.
For the reaction (2.1.I) the back reaction is

0, =— 20. . (2.1.1")

Its order, as we can easily see, i1s two. If the formation rate
Ry of the o-material is measured in mole/cm3+sec then as follows
from (2.1.11) the dimension of the rate constant is

[k,.] = (mole)l-m' (cm3)m"1 sec™ 1, (2.1.20)

f
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Then from the total size
a monomolecular reaction

L

30

20t

10}

Number of cases out of 100

Fig.

molecular.

is the catalytic material.

1

A

0 /0% 1031071071 g2°

0.

(m' =

The wmlues
magnitude

order.

1, kf

of 4
of 10

enerally have
£3 5,

10!

-1
sec
following data which were gathered from a
book by Kondrat'yev [19] give us an idea
of how often the value of 4 has the above
According to these data out of
100 cases in one case the value A has the

of the rate constant it follows that for
= Ae-E0/RET) the "dimension of
the rate constant is the frequency (sec~

an
The

order 10%, in two 105, in four 10°%, in

nine 1010

in seven 1011

in twelve 1012,
in twenty-nine 10'3, in nineteen 10l%, in

Ly,

order of

twelve 1015, in three 10!® and in one case

1017 sece-t?

jority of
of 10¥2

(Fig. 10). Thus,

cases (60 out of 100) the order

10l% is observed,

in the ma-

In fact,

the dissociation reactions of the type
(2.1.I) are not monomolecular and go
through two-body collisions.

the recombination type (2.1.I') are tri-
Thus dissociliation and recombination reactions take place
in catalytic materials which may be molecules of different types.
The rate of these reactions depends on the type of molecule which
In the numerical calculations (see

Reactions of

Chapter 3) for certain dissociation-type reactions for which we

did not succeed in finding reaction rate constants in the litera-
ture we applied a hypothesis about thermal dissociation (i.e., the
reactions were considered monomolecular.

calculations described above was assumed equal to 1013
value of activation energy Fy was assumed equal to the dissociation

energy.

This is true for unexcited molecules.

The wvalue of 4 in the

sec'l .

The

In Table 4 the rate constants for certain reactions are given.

J—

1

~NI DD T e W

TABLE 4
Reactions | CEale | e e
02+M- 20+M 02 3.6-]021 T—2-¢-59380/T
0] 2,110 18 1= %, —59380/T
- N,N,,NO 1-2‘1021T_‘/’-c‘5938°/7
No+tM-+ 2N+ M N, 31021 T~% . ¢ — 113260/
N 1,5-1022T~ % . ¢~ 113260/T
- 0,,0,NO 9,9-1020 T %. o~ 113260/T
NO+M -fi\‘+0 N,,02,0,N,NO,Ar |5,2-102 1p=%. ¢ —75490/T
03+ N+NO+0 » 1012 % . ¢ —3120/T
Ngt+ O »NO+N 5.1013. ¢ — 38000/T
Ny+0y-2NO 9,1-1024 T~%.¢ —65000/T
NO*£e” +N+O 1,8-1021 7%

b7
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As we already mentioned chemical reactions may occur both in
a forward direction (reaction of initial materials with the forma-
tion of reaction products of a rate constant k,) and in a back
direction (reaction of reaction products with the formation of
initial products of a rate constant kp). The general form of the
reaction

B B
2 viA — 1 v’A
T ney ®o (2.1.21)

can also be written

LY S

2 VA = T VIA (2.1.22)
a=1 o=l

kb
T vZA — 3 v A,
a=1 & ¢ a=1 & % (2.1.23)

For simultaneous chemical reactions the law of mass action (2.1.11) /56
may be applied to each of the reactions (2.1.22) and (2.1.23), if.e.,

— [T Vf i V.”

R, =’ ~v: )k, 1 w.l+(v' -v)k, © w.',

o " e T Ly R A N (2.1.24)

In thermodynamic equilibrium there is no change in composition.

Therefore, the constants kf and kp may be expressed by an equilib-
rium constant k,. In fact,

(2.1.25)

The equilibrium constant k,, as we know, may be calculated with
great accuracy by methods of quantum mechanics and statistical
physics. Sometimes it is more convenient to use the equilibrium
constant expressed by partial pressures of the components.

p - wyRT and, therefore,

ke/ky =k, =k (RT)™", (2.1.26)
where
S PN (
= 1 (p, ; 2.1.27
PP )
nemo-m. (2.1.28)
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Generally an approximation of the function k,(T) in the form of a
certain polynomial is used in numerical calculations.

Comprehensive information on the thermodynamic properties of
materials (including information on equilibrium constants) is
contained in [201].

Let us convert (2.1.24) using (2.1.27) and converting to mass
concentrations:

= e of v ki’
Ra=(va-va)kfpm(.n X R ciz).
=1 ..E(% 3) =1 (2.1.29)
" \a=1

Let there take place I reactions simultaneously in the gas mixture.
Then the expression for the molar formation rate R, of the a-material
as a result of all the homogeneous reactions may be easily obtained
by generalizing (2.1.29) for this case:

- 1 mtl e Y TS
Rom 2 0= o | 0C)7 ot 5,
rel Jj= pr,_— , ri=l (2.1.30) /57
- (2¢y) —
pr

here v{y, viy» are the stoichiometric coefficients in the rth
reaction (r = 1,...,12),

ko -
. lvw o« == 3z Vaer.' (2.1.31)
- o= 1

ml-z ’ - ll= ., _ rr ’

r avar’ mr Evar’ nr_m,~mr. (2.1.32)

Thus, finally, the equations of continuity for the components
(1.3.29), or as they are sometimes called, the equations of diffu-
sion are written in the form

’

,89&-41 . -2 ; l ” rd m"
at +d1V(pCav+]a)= ’_El(var—var)kfrp x
[T B o_Viy
x|lone - qng’t. (2.1.33)
j=1 Y kpr _ . ji=1 /
—(2C,)
r
p a
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Let us show by example how (2.1.33) is written for the special case.
Let there be a gas mixture consisting of the components C(N1),
co(w2), CO,(N3), 0(Nu), 0,(N5) among which there occur the reactions

02+0z 30, kfll.; (2.1.111)
20, == 20+0z, kg  ; (2.1.115)
C0 == C+0, L (2.1.IT1)
Co, == CU+0, By o (2.1.1V)

where kfl-l’ kfl ,? kfz and kfs are the rates of forward reactions

of (2.1.II,), (2.1.II5), (2.1.III) and (2.1.IV), respectively. For
reaction (2.1.II;):

vi =0, v5 =0, v; =0, v, =1, v;=1,]
V;’=0, V;’:O, V;’.= 0, V;’: 3, V;’:U, (2.1.3“‘)
m =2, m"=3, n=1.

For reaction (2.1.II,):
vi =0, v5 =0, v; =0, vi =0, v
0, Vi a0, vGe0, vn2 vP 1, (2.1.35) /58
m'=2, m”: 3' n::l. .

For the reaction (2.1.III):

| v1=0, v =1, v3 =0, v =0, v§ =0, (2.1.36)

2}4 Vlal, V;:O' V;:O, V’;=1, V'5’=O'

g m”=1, m”=2, n=1,

S

o For the reaction (2.1.1IV)

g

O V’=0 V’=O V’=1 V'=0 V’=0

) rrooEm e 3T A S (2.1.37)
Reaction coordinate v, = 0, Vg = 1, vy = 0, Vg = 1, Vg =0,

”»

m' =1, m”=2, n=1.
Fig. 11

Then, for example, for the O-component, the equation of diffusion
is written as follows:

dpCy ., 2 g . &l
gt rAeTD i) = 26k Eyeky G G |
p EC“ (2.1.38)
€< c
= 14 - 274
+kfzp Cz—k——— +kf,P Ca—‘—————k , o=l ...,5.
P = P
-~ LT —_—
P o @ p ic“
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In conclusion let us note that in technology catalytic-type
reactions are very important. The change in the chemical reaction
rate under the effect of materials (catalysts) which do not appear
in the final products of this reaction is called catalysis. Hence
it follows that a homogeneous catalytic reaction goes through
several elementary reactions in which the catalysts enrters the re-
action and is regenerated. If the catalyst accelerates the reaction
this means that in the absence of a catalyst the reaction regquires
a great activation energy (Enoncat in Fig. 11).

Let there be a bimolecular reaction occurring in the absence /59
of a catalyst according to the diagram

A+ B » C.

In the presence of an accelerating catalyst X the reaction goes
through intermediate stages

A + K=—=AK;
AK + B— C+K.

Figure 11 shows the dependence of the potential energy
system on the reaction coordinate in the absence of a catalyst
(Curve 1) and with a catalyst (Curve 2).

Thus, to obtain correct results in studying the complex re-
actions we must apply (2.1.30) to each of the elementary stages
through which the reaction in a system goes.

2. Chemically Frozen and Equilibrium Flows

The system of aerothermochemical equations (1.3.40)-(1.3.42)
permits substantial simplifications in two extreme cases. Let us
look at the equations of continuity for the components. They
include terms which take into account the transition of the a-com-
ponent across the surface of the elementary boundary in the gas
phase and the formation of a component in it as a result of all
the chemical reactions. When the macroscopic and microscopic
transition of material is substantially greater than the formation
of the component as a result of the chemical reactions we can dis-
regard the right-hand sides of the equations of continuity and we
come to equations of a chemically frozen flow. This case may be
encountered at low temperatures or when the reaction rates are
small as a result of the high activation energies. Thus, eguations
of diffusion for a frozen flow ? are:

>
ff."ca“di"(f’ca;*ia)=°' a=xl, veey po o (2.2.1)

3 since we have agreed to study physically equilibrium flows, helow
in giving the theory of nonequilibrium flows we will not stipulate
each time that we are speaking of chemical nonequilibrium (frozen,
equilibrium) flows.
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In the second extreme case (Kpu, kbr >> 1) when the diffusive and
convective transition of the material is substantially less than

the formation of the component as a result of chemical reactions /60
(high temperatures, relatively low activation energies) we come to -
a system of equations

R,=0 (2.2.2)
or in more detail:
m' B _V.’r m' i —_— ';
T v )Nk, p ¢! -k, pr T, |=0.
roy o ar fr j=1 7 br je1 (2.2.3)
Let us denote .
Voar = Var = g, aud
B .__V-’ m- i v.ll
ke o " T Mk, o't m €. o2 -1,.
frp i=! ] bfp ]=l i r? r » oo,l.

Then we can examine the system of equations (2.2.3) as a system of
linear algebraic equations with constant coefficients and we can
pose the question about its consistency. Thus,

a Xi+toeeoet+a X =0'
11

! L= (2.2.4)
ap.111+-~-+ay.lll =O,

Here 7 is the entire number of reactions including uniform reactions
which occur in different catalytic materials. However, we can
easily see that the number of unknowns can be reduced to

k(1 = % e where 7, is the number of modifications of the reaction
r=

r). On the other hand, among u equations not all are independent.
In fact, v linear relationships exist:

®
Z M.n R =0, T=l,no,V, (2.2.5)

which express the law of conservation of an element during chemical
reactions (it is assumed that intranuclear conversions do not

3 . 3 s
occur) and the equation of the conservation of mass is

ala = (2.2.6)

Equation (2.2.6), as we can easily see, is the result of v preced-

ing equations and, therefore, is not a new independent equation.

Thus, we have u-v independent equations for k unknowns. When the
number of independent reactions is less than u-v, the task has been /61
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formulated incorrectly. When k = p-v the physical significance has
only a trivial solution which leads to equations of detailed
equilibrium. -If. k% > u-v, generally from the total equilibrium

there does not follow an equation of detailed equilibrium without
applying new postulates which exceed the limits of the basic laws

of thermodynamics. The repeatedly mentioned principle of the micro-
scopic reversibility of Thomson [21,22] is such a principle whose
special case is the principle of detailed equilibrium. According

to this principle under equilibrium conditions the molecular pro-
cess and the reverse process take place on the average at the same
rate. TFor example, if the material in the gas phase is found in

the three forms A, B, C among which mutual conversions occur then
the total balance is not destroyed if the uniform motion in a cycle
occurs (Fig. 12). The principle of microscopic reversibility asserts
that equilibrium will be represented not by the cycle in Figure 12
but by the ecycle in Figure 13. Thus, in a state of equilibrium

each chemical reaction occurring in the system is self-balanced.
When the principle of detailed equilibrium is not correct the con-
centration of all the components must experience vibrations in the
approach to detailed equilibrium. Such studies were undertaken by
Srabal [23] but they yielded no final results. Thus, for an equilib-
rium flow u equations of diffusion are substituted by equations

of continuity for a chemical element:

n c *n g
_tee vy ——'Eg(pca-15+]a)=0. T=J,e0ee, v, (2.2.7)
1 Mc'~ o=1 Ma

9

e
at v

I MF

One of the equations of

B
/// \\ ,// B (2.2.7) can be substituted
/ \ by :
A
\ C

A
¢ £ e M, =)
R T (2.2.8)
Fig. 12 Fig. 13
and the pu-v independent equations for the equilibrium constant:
BV, eoo__v;
I c]."= . ! — I cl.".
j=1 pr{ ¥ —\T i=l (2.2.9)
n ¢
n, =1 o
p

3. Phase Equilibria in Single-Component Systems

The number of degrees of freedom in a single-component system
is determined, as is known, by the formula

f=3-k (2.3.1)
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where k¥ is the number of phases. Thus a system consisting of one
phase may have two degrees of freedom (e.g., pressure and temperature)
a system of two phases may have one degree of freedom (pressure or
volume or temperature) and finally if a system consists of three
phases the number of degrees of freedom is equal to zero. This

means that all three phases: liquid (L), gaseous (G) and solid (S)

can exist only at one strictly defined pressure and temperature.

A typical state diagram for such a system is represented in

Figure 1k4.

Point ¥ (the triple point of the
phase diagram) represents those values
of P and T at which three phases
exist simultaneously. The sectors
S, I and G represent the values of
pressure and temperature at which
only the solid, liquid or gaseous
phase exists. The dividing lines
are determined by the function P(T)
where the existence of two phases
simultaneously is possible. In accor-
dance with this, line ON 1s called
the sublimation curve, lline (CN is
the melting curve and line ND is the
evaporation curve. Line ND ends at

Fig. 14 the critical point D. Let us note
that with a slope of line NC to the
right the volume of the materials converting from the solid to
the 1liquid phase increases. For anomalous materials (gallium,
water) the volume, on the contrary, decreases with a phase transi-
tion and the curve NC has a slope to the left. The dotted curves 63
AN and BN represent metastable states. Let the pressure and tem-
perature correspond to point a of the phase diagram. In this case
the material is found only in the gaseous phase. If with a fixed
pressure we decrease the temperature, moving to the left along the
straight line ay we will come to point B where there is the liquid
phase. Subsequently the.cooling of the ligquid will occur while at
point Yy the solid phase will not appear. If the line ay is drawn
with a pressure p = 1 atm the point B is called the boiling point
while the temperature corresponding to it Tg is the boiling tem-
perature. Point y is the melting point and Ty is the melting
temperature. For example, for graphite ¢ = 1 - 2.2 g/cm’® at
T = 20°C, ep = 5.17 cal/g+deg (T = 1000°K) and 7.9 cal/g-deg
(T = 2000°K), k = 0.187 cal/cmrsec-deg, Ty = 3772°K, Tp = 3927°K
and L = 14,132 cal/g.

When the material is by-passed by the gas mixture in which
the partial pressure of the vapors is less than the pressure of
the saturated vapors at a temperature which corresponds to the
temperature of the material, and when the temperature of the mater-
ial is less than the temperature at the triple point of the phase
diagram the material begins to sublimate. Let us look at the rate
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of nonequilibrium evaporation from the surface of a material
found in a solid or liquid state.

If the gas near the surface has a temperature T and a pressure
p, the number of molecules colliding per unit area of surface is
determined by the formula

n = Np/V2=MRT. (2.3.2)

If the Ath part of the molecules condenses [and the (1-4)th part
is reflected] then obviously the number of condensed molecules is

n ANp/V2=MRT,

cond ~ (2.38.31
where p is the pressure in dyn/cm? and R is the gas constant
(8.315°107 ergs/°K). If the vapor is saturated then per unit time
more molecules are condensed than are evaporated, i.e.,

n ANp*/V2=MRT, (2.3.4)

evap’

where p®* is the pressure of the saturated vapors of the surface
material, Despite the external similarity of the formulas for

n and n these values 1in essence do not have anything in
cond evap

common: 7 _ . . is determined by the properties of the gas and nevap

depends on the energy necessary to overcome the intermolecular co-
hesive forces in the surface material. If the pressure p#p#%* the
evaporation is nonequilibrium and, obviously, the mass velocity of
carrying away the surface material U is determined by the formula
(Hertz-Knudsen)

U=AMGp" -p/V2=MRT. (2.3.5)

The coefficient A is called the sticking probability and exerts a
substantial influence on the evaporation rate, [24]. The value of
A for the case of evaporation from a graphite surface is known
with a very high degree of accuracy. Below we will give calcula-
tions of the chemically nonequilibrium boundary layer with the
sticking probability changing in a range between 0.1 and 1.
Shchennikov's paper [25] contains calculations of the equilibrium
boundary layer with a wider interval of change in 4 (0.003-1.0).

We can easily obtain a differential equation for the phase
equilibrium curve., As we know from thermodynamics, in the absence
of gravitational, electrical and surface effects the Maxwell equa-
tion is satisfied

@p/dT), =(3S/av), , (2.3.6)
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where v,S5 are respectively the volume and entropy of the system.
From experiments we know that in the processes of melting, evapo-
ration and sublimation the change in the equilibrium pressure with
temperature does not depend on the entire volume of the system. On
the basis of the second law of thermodynamics the change in entropy
with the phase transition AS = AH/T = L/T where L is the heat of
the phase transition. Thus,

dp/dT = L/Tav, (2.3.7)

Av is the difference in molar volumes of the material in the two
phases. Equation (2.3.7) is the known Clausius-Clapeyron equation.
For the case of the processes of evaporation and sublimation (2.3.7)
it is easy to integrate. In fact, in these processes the molar
volume of the vapor is substantially more than the molar volume of
the condensed phase (at moderate pressures):

v >> v
evap cond

Therefore

AV =V -v ~0___ =RT/p.

eap “cond” emp (2.3.8)
In addition,
7
L=L0+f(ACP)dT, (2.3.9)
0
here Ly is the latent heat of transfer at 0°K which represents /65

the work which must be expended at absolute zero in order to tear
molecules away from their neighbors in the condensed phase and to
convert them to the gas phase. The second term in (2.3.9) repre-
sents the energy which must be transmitted to the system to com-
pensate for the difference in the energies of thermal motion in
the condensed phase and the gas. In the case of evaporation the
basic part of the latent heat of transfer is usually represented
by the first term in (2.3.9). Then (2.8.7) is converted to the
form

2
dInp/dT = L, /RT (2.3.10)

and we can easily integrate it:

. - L,/RT
p =conste . (2.3.11)

Thus, in this approximation it is enough to know the value of the
equilibrium pressure of the vapors p* at any one given temperature
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in order to know it in an entire range of temperatures. Often it
does not make sense to use more precise means of approximating p%*

104
2

0 L 2 3\ 4 -
~1r
N %

5l .\

X

41 \
% p’mn
Fig. 15
(for example, by means of the Nernst equation 1lg p = A-% + eT + D T
as a result of the great discrepancies in experimental data with
respect to the pressures of saturated vapors. For example, in

1952-1955 Goldfinger et al. measured the pressure of a saturated
carbon vapor by a method of evaporation from an open surface

(Langmuir method) and by the Knudsen effusion method [26]. There 66
was approximately a 100-fold difference in the data, but neverthe-
less at the present time they are assumed to be the most accurate
[27] (see Fig. 15). Experimental data obtained on the basis of
the Knudsen method are noted by the mark O and those obtained on
the basis of the Langmuir method are marked by an %,

Below we will give numerical calculations of the boundary
layer in which values of p* were calculated according to experi-
mental data obtained on the basis of both the Langmuir and Knudsen
methods.

4. Kinetics of Heterogeneous Reactions

The phenomenon of surface destruction is complicated sub-
stantially if other heterogeneous processess (catalytic or combus-
tion-type) are possible on the surface. Thus, if a catalytic
homogeneous reaction can be studied simply as a reaction occurring
via several elementary reactions then any reaction on a solic sur-
face can be subdivided at least into the following stages:

(1) Transfer of reacting materials to the surface;

(2) Chemical adsorption of reacting materials by the surface;

(3) Strictly chemical reaction of the surface between the
adsorbed materials and the surface material or between the adsorbed
material and the molecule colliding with the surface;

(4) Desorption of reaction products from the surface;

(5) Elimination of gaseous reaction products from the surface
in the form of a convective current and be means of the diffusion
mechanism. 1In addition, heterogeneous processes occur in the pores
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of the material, and it happens that the elimination mechanism of
the formed components depends substantially on the radius of the
pores. However, for studying aerothermochemical problems it is suf-
ficient to take into account only the total effects caused by heter-
ogeneous processes. For this purpose we can introduce the matrix e
of phenomenological coefficients as Rosner did [28]. The coefficients
eij[i,j = l,...,u) of this matrix represent the probability of
transition of the ©Z-component as a result of adsorption, hetero-
geneous reactions and desorption into the j-component. Thus, the
quadratic matrix ¢ with the dimension completely determines the
local chemical activity of the surface. However, it is simpler to
assume that the velocity Uy, of the entry of the a-component into

the gas phase as a result of all the heterogeneous processes is
known (if Uy <« 0 it means that the oa-component transfers at an

absolute rate |U,| from the gas to the condensed phase). Generally
Uy must be determined experimentally.

1. Adsorption

Let us look briefly at certain features of heterogeneous
processes on a surface. Two kinds of adsorption are known.

(1) Physical adsorption where molecules are retained on the
surface at a distance of the order of 3% by van der Waals forces
which by nature are analogous to forces operating between the
molecules in the gas;

(2) Chemical adsorption when adsorbed molecules are maintained
at a distance of ~ 1X by forces of an atomic valent bond in the
molecules. With chemisorption there can occur a decomposition of
adsorbed molecules into atoms or radicals and an exchange of elec-
trons with surface atoms. Generally in the overwhelming majority
of cases the molecule colliding with the surface remains on it for
a certain interval of time. Materials found in contact with cold
(hot) air are warmed (cooled) mainly as a result of the adsorption
mechanism. Langmuir developed a theory of adsorption based on
the following assumptions:

(1) Molecules are adsorbed on definite segments of the adsor-
bent's surface. The number of adsorbing sites in the process does
not change. The adsorbing sites are easily accessible and energeti-
cally equivalent.

(2) There is no physical reaction between the adsorbed molecules
and as a result there is no molecular motion along the surface of
the adsorbent.

(3) Molecules can be adsorbed only by colliding with the sur-
face sites which are not already occupied by adsorbed molecules.

These three assumptions form the concept of the "ideal" ad-
sorbed layer. Langmuir introduced the first supposition because
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because molecules in a two-dimensional crystal lattice of the ad-
sorbent's surface from a true alternation of potential maxima and
minima. The second supposition is gemnerally not true since adsorbed
molecules almost always move along the surface. The third suppo-
sition automatically means that the adsorbed layer must be mono-
molecular. Let the number of molecules necessary for a complete /68
surface coverage of all the adsorption centers for 1 cm? of surface
be oyg. Let us denote the number of adsorbed molecules of a-type
per 1 cm? by 04- Thus, if per unit of time n, , a-type molecules
M

strike a unit surface area, then ng I GB/GO of them returns to the

U p=1
gas phase and, therefore na(l— b GB/GQ is adsorbed. Let t he the

=1
mean time 10 during which the adsorbed a-type molecule remains on
the surface, Then, obviously

[
o, = (-—p?lcp/qanata, a=1,u, it (2.4.1)
or 6 ( ’ )—1
=R, T, {Cg+ I NgT
a” Tata \TOT g7, 7B "8 (2.4.2)
where 8, = 0,/09 is the share of surface sites occupied by mole-

cules of the a-component. Let 89 be the share of sites free for
adsorption, Then, obviously,

Eeai-eo =]o (2.‘4.3)

In addition, let us. introduce the notation

=40
0P =0 (2.4.4)

where p is the partial pressure of the a-component and n  is
determined by the formula

nu==Np“ ¢2nMaR .

Then we can easily show that

(2.4.5)

0g = 1/1rza py)s (2.4.6)

10 rFop example, for the adsorption of oxygen atoms on tungsten at
2548°K T = 0.36 sec, at 2362°K, 1 = 3.49 sec. Usually the
dependence of the adsorption time on the surface temperature is

. . _ . ed/RT
approximated by the equation (of Frankel): T = T » Where Ty

is the vibrational period of the adsorbed molecule in a direction
perpendicular to the surface and ¢ is the heat of adsorption.
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and the equation of the Langmuir isotherm (2.4.2) becomes:

e =a e L]
o «Pa®0 (2.4.7)

Let us examine the energy equations with adsorption using a 69
hypothetical bivalent molecule as an adsorption sample [29]. 1Imn
Figure 16 the potential curve 1 refers to the physical adsorption
of the molecule AB. During chemical adsorption there is usually
dissociation into atoms. Curve 2 represents the dependence of the
potential energy of the system A + B [k] (where k is the surface
material) on the distance from the surface. The intersection of
curves 1 and 2 determines the value of the chemisorption activation
energy. In Figure 16, qph s and q.peg 2aFre respectively the heats
of physical and chemical aﬁsorption, Ea is the chemisorption
activation energy, Edes is the desorption activation energy and
Qqp is the energy of the dissociation of molecules AB into atoms
A + B. Let us note the obvious relation
(2.4.8)

Edes - Ea = qchem

A+B+[K]

Potential energy

~5A Distance from
the surface

Fig. 16

In Figure 16, the potential curves for illustrating exothermic
chémisorption are given. de-Boer indicated the possibility of
endothermic chemisorption. At high temperatures (in comparison
with chemisorption) the effect of physical adsorption on the
heterogeneous process is negligibly small. The activation energy
of physical adsorption is usually several kilocalories per mole.
The activation energy of chemisorption has the order of activation
energy of chemical reactions, for example, with the chemisorption
of oxygen atoms on tungsten Ea = 147 kCal/mole.
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Potential energy

Reaction coordinate

Fig. 17
2. Heterogeneous Catalysis
At the present time we assume that a catalyst participates /70
at least in two stages of the overall process. During the process

it subsequently enters the reaction and is regenerated. In this
respect the position is the same as in homogeneous catalysis. The
presence of a catalyst opens up a new path for the reaction which

is made up of the abundance of elementary reactions in which the
activation energy 1s substantially smaller than in a reaction with-
out a catalyst. In Figure 17, we give a comparison of the profilles
of a path of a homogeneous noncatalytic and a heterogeneous catalytic
reaction A+B. Curve 1 represents the homogeneous reaction and

Curve 2 the heterogeneous reaction. In Figure 17 gadss qdes and &

are the heats of adsorption, desorption and the total heat of re-
action; E_ 355> EFdess FPhoms» Ph.a. and Eh,t are respectively the

activation energies of adsorption, desorption, homogeneous reaction
and the apparent and true activation energies of the heterogeneous
reaction. We can understand these values from Figure 17. As we
know, a heterogeneous catalytic process can not displace equilibrium
in the gas phase, otherwise this would contradict the second law of
thermodynamics. A catalyst can not cause a reaction which under

the given conditions is thermodynamically impossible. The activity
of a catalyst in the process of changing the initial chemical

system is not only an accelerating one but also an orienting one.
The orienting activity of a catalyst is expressed only when the /71
chemical system can be developed in several thermodynamically pos-
sible directions. Therefore, in the case of a catalytic surface
there can not be detailed equilibrium on the surface. Only solid
materials with a large bonding energy between atoms possesses
catalytic activity. A large part of the catalysts possess ion or
metallic ecrystal lattices with a large bonding energy [30]. 1In
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practice, cases of molecular crystals and iiquids being heterogeneous

catalysts are unknown. The overwhelming majority of catalysts are
either metals o?¥ binary metal compounds or salts. Thus, using a
general assumption about the catalytic surface must be considered
in every case during the numerical calculations of aerothermochem-
ical problems. Nevertheless in practical calculations, as a rule
the assumption concerning detailed equilbrium on the surface of
the material is applied since this substantially simplifies formu-
lation of the problem.

The law of effective surfaces formulated by Langmuir is the
basis for studying the kinetics of reactions in ideal adsorbed
layers. According to the law of effective surfaces, for the
reaction

k
I fl ®
T v, A== = v A, ., l=l.,s,

occurring in the surface layer, the rate is proportional to the
portions of the surface 8, occupied by reacting materials in
powers equal to the corresponding stolichiometric coefficients [cf.
(2.1.30)1:

”» r 4
s TR ooy n,
U = = (v’ -v, )k, T 6% -k, 1 8%}e
R SR U I L R e R I (2.4.10)
n
where n, = I (v"z—véz),eo is the portion of free sites of the
o=1
surface. The degree of covering 6, of the surface by the a-material

is related to 89 by equations (2.4.7)

In the state of equilibrium U, ,6 = 0, Using the principle of
microscopic reversibility and taking into account (2.%4.7) we obtain
. e by fu vy
kﬂ/k“ = kpl = aglpu /u P, (2.4.11)
where
B Vo v:l
kY =k, T a , R, =k, mIa_ ..
fLT0fl gy & bL"TH e (2.4.12)
Thus, if the formation rate of the oa-component (a = 1,...,u),

as a result of all the heterogeneous reactions, is equal to zero
then from the equations for the ideal adsorption layer there result
equations of detailed equilibrium.
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The law of effective surfaces occupies a place in the kinetics
of heterogeneous catalytic reactions that is analogous to the
place of the law of effective masses in the kinetics of homogeneous
reactions. However if there is an interaction of adsorbed particles
on the catalyst's surface and the number of active sites and their
adsorptive capacity change during the course of the process itself
the law of effective masses will not be satisfied. Therefore, the
experimental study of the kinetics of heterogeneous processes on the
surface of specific coatings is necessary.

3. Heterogeneous Combustion of a Graphite Surface

Bearing in mind the presentation of the numerical solutions

of aerothermochemical equations for the case of the streamline flow
of graphite by a high-enthalpy gas mixture let us study the heter-
ogeneous combustion of graphite on the basis of experimental papers
[31,32]. Experiments were performed up to a surface temperature of

~ 2,000°K. Below let us assume that: (1) sublimation and hetero-
geneous combustion reactions occur on the same active surfacej; (2)
the reaction mechanism found by Blyholder [32] is preserved up to
a surface temperature of ~ 3,000°K.

From Blyholder [32] it follows that the reaction rate does
not depend on the degree of dissociation of 0. Following the
assumption of Moor and Zlotnik [16] let us assume that the adsorp-
tion of the O atom from CO, is still possible since the bonding
energy of O in COy is of the same order as in 0 [33]. For sim-
plicity let us assume that nitrogen and its compounds do not
participate in heterogeneous reactions. Thus, the following irre-
versible combustion reactions and the sublimation reaction of the
material are studied:

Cgraph. = Cgas; (2.4.1)
ggraph,'*?o_"_soéo. (2.4.1I1)
graph. * 272 . ’ (2.4,I11)
graph.+ €O — 2C0. (2.4.1IV)
The total number of 0 atoms per unit volume which can be adsorbed /73
is
M, ) N
[ ——Ca+Cc} —
p(44'1.13 375 M, (2.4.13)
where N is Avogadre's number. The portion of these atoms necessary
. My My
for © ;S ew/(ey + E; es + Cs/, for 0y es5/ (cy + Py e3 + e5) and for
L
CO» c3ﬁ; / (ey + 7Py e3 + e¢g) . Taking into account the fact that
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desorption occurs only in the form of CO [32] we come to the con-
clusion that if ¢ is the number of carbon atoms desorbed per unit
of time from a unit surface then ¢ gives the number of desorbed O
atoms. Assuming a stationary state let us say that ¢ is the total
number of 0 atoms adsorbed by the surface per unit of time per unit
area. The value of ¢ is calculated by Blyholder [32] as:

Yy —E/RT,
@:1.55-10”%: ¢ “VR(ngeng+2ng), (2.4.14)

where k is the Boltzmann constant and EZ is the activaton energy

( ~ 2 kCal/mole). Then the mass velocity Uy of a-components enter-
ing the gas phase as a result of all the heterogeneous reactions

is described by the following system of equations:

U, =Upsunl, (2.4.15)
M, .
M, My Q_lu
U2=¢N+ M, N’ (2.4.16)
C4+c5+i{_—c3
M,
M, ©3 M,
u, =~ " ®x (2.4.17)
4
Catlg + 77 C3
4 5 Ma
¢ M,
u,=- 4 Y Q-ﬁ—» (2.4,18)
4
C4+CS+-M—363
s M,
U, -- — ey (2.4.19)

4
V' +C +____C
4 S M3 3

~
<
&=

Here we have taken into account the fact that the adsorption of the
0 atom from CO, leads to the formation of CO in the amount

M

TE M
3 M (2.4.20)
M.. N

4
C4+C5+ﬁ—~C3
3

If we sum (2.4.15)~(2.4.19) we obtain the mass veloelty of the
removal of graphite from the surface which, as was to be expected,
1s equal to
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5 1
E Ua =& —N—+Ulsub . (2.5.21)

5. Heterogeneous Processes in Porous Surfaces

If the heat protective coating has a porous structure the re-
action surface increases as a result of the internal reaction
surface. However, if the porous granular structure in commercial
catalysis permits an increase in the escape of the product a por-
ous structure of the coating is undesirable. This 1s because the
carrying away of the mass of the porous coating would be substan-
tially more than the loss of mass by a solid coating with an in-
significant supplementary absorption by the material.

Let us introduce the following symbols [34]1t s, is the sur-
face area of the pores per 1 g; V, is the volume of %he pores per
1 g3 Pt is the chemical density oY the material and Pp is the den-
sity of the sample.

The share of the total volume of a material devoted to pores
is called the porosity of a porous material. If V is the volume
of 1 g of the sample, the porosity 8 is

e._.vp/V. (2.5.1)
Since v ___1___1_

P—pp p" (2.5.2)
then

0=(p,=p, ) p,~ (2.5.3)

Porous materials may possess anisotropy (e.g., wood) and also an
organized structure (e.g., a correct stacking up of spheres) or dis-
organized structure of pores. Below we will refer to isotropic
material.

We can easily show that the surface area of a porous material /75
consists of pore holes for portion 6 and of solid material for
portion (1-6). In fact, let there be a sample of unit length and
unit cross section (1 cm?). The sample will have a unit volume
and, by definition the volume of all the pores will equal 6. Let
us assume that the sample is cut into thin sections e€ach having
a width of Ax. All the sections will have statistically the same
overall area of entrance pore holes which we shall symbolize by

Ap. Then the volume for the pores in each thin section is A4dpAx
and the total volume of the pores of the sample is Ap, but this is
the porosity 6, i.e., Ap = 0.

We can roughly estimate the mean radius of the pores ¥ if we
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assume that pores are one unbroken cylinder of circular cross
section.

r=2V_, /S, .
£°"8 (2.5.4)
For activated carbon Sg = 500 - 1500 m2/g, vV, = 0.6 - 0.8 cm3/g
and therefore ¥ = 20 R. TFor commercial catagysts (e.g., vanadium

used in the process of obtaining sulfur gas) ¥ can reach 2000 .
The total length of the pores for 1 g of material is estimated
from the equation

2
Lg=Sg/4—an. (2.5.5)

For a material for which S, ~ 1,000 m?/g and V, ~ 0.7 emd/g L, is
10!3 cm. Pores can be communicating or uncommunicating. Obviously
the gas flow in pores is possible even if part of the pores commu-
nicate among themselves and with the surface of the material. This
part of the pores forms the active pore space. Therefore we can
generally introduce two porosities, the total 8 and the active 6,
which is the ratio of the volume of the pores communicating among
themselves to the total volume of the material. Certain volcanic
rocks have a high total porosity but a small active porosity.

Keeping in mind a study of the flow of a chemically reacting
gas in the pores let us introduce the length L,, of the pores at
which an equilibrium value of the concentratiocn of the a-component
is established as a result of heterogeneous reactions. Then S,,
(the reaction surface area per 1 cm? of the material's surfaceg is
estimated from the equation

Soa=2nTnpLpq, (2.5.6)
where n,, is the number of escapes of the pores per 1 cm? of the /76
materials surface. If we assume that a pore is a circular cylinder

perpendicular to the surface of the material, then obviously,

Ny = O/nF2. (2.5.7)

We can introduce the simplest correction to (2.5.7) for the dip
angle of the cylinder to the surface since the mean statistical dip
angle is ~ 45°, Thus,

_ 72
np_e/nr 2.

(2.5.8)
Semi-empirically instead of 1/¥2 the correction coefficient pl/2
or 61/3 is obtained. But since 8~ 0.5 for the majority of materials
the correction obtained is unimportant. We can easily see that
n, for 6 = 0.5 and ¥ = 10 & is ~ 10!3 cm-2., Taking (2.5.8) into
account, equation (2.5.6) is converted to the fornm
Spa = 02 L, /T. (2.5.9)
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If L, ~ 5u then § a'leB. Thus, in such case the outer reaction
surface is ~ 0.1% of the total reacdion surface. During the molec-~
ular motion of initial materials in the pores of the material theilr
concentration must in general diminish as a result of collisions

with the pore walls (since part of such collisions leads to the
reaction) with a growth in the concentration of reaction products.
The value of the drop in concentration depends substantially on

the reaction rates, diffusion coefficients and the dimensions of

the pores. Depending on the radius of the pores the nature of the
diffusion in them may be different. If the dimensions of the pores
are small in comparison with the mean free path of the A molecules
then during their motion there will occur frequent collisions with
the walls and infrequent collisions with each other. When the mean
free path of the molecules is small in comparison with the dimensions
of the pores 27, the molecules will undergo frequent collisions

with each other and infrequent collisions with the pore walls. Thus,
in the first case (2%F/\A << 1) the flow in the pores will be a free
molecular one and in the second extreme case (27/)X >> 1) a hydro-
dynamic description of the flow is necessary. As we know the mean
free path of molecules is

A= kTpnc* V2, (2.5.10)

where p is the pressure and o is the diameter of the molecules. /77

Assuming that 7~ 2,000°K, 7 ~ 10% and o ~ 48 we find that in the
pores there will exist a free molecular flow up to a pressure of

the order of several hundreds of atmospheres, i.e., in all cases

of practical interest. Below in our numerical calculations we

will limit ourselves to a study of the first extreme case (2r/)x <<1),
In studying this case it is natural to apply the Knudsen theory
concerning free molecular flow in an infinite tube. Knudsen ob-
tained the following expression for the coefficient of diffusion

of the a-component (see, for example [35,21].

27 \ [8kT
Do = 3=\ 7w (2.5.11)
As we can easily see the coefficient of diffusion D, does not
depend on the presence of other types of molecules. In obtaining
(2.5.11) it was assumed that:

(1) The tube has an infinite length;

(2) The walls completely scatter the molecules in accordance
with the Knudsen law. This law says that the number of molecules
tearing away from the surface in a definite direction is proportional
to the cosine of the angle between this direction and the normal
to the surface; .

(3) The gas is found in equilibrium and conforms to the Max-
well distribution.

The first two assumptions permit obvious refinements, for
example by taking into account a certain part of the molecules
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which are reflected by the wall like a mirror. As for the last as-
sumption it i1s clear that the gas in the flow is found under condi-
tions which are far from those of equilibrium. This. follows from

the fact that such an equilibrium can be retained by a large number
of molecular collisions. However, in a free molecular flow the num-
ber of collisions between molecules is insignificant, but since other
data are lacking let us assume that the third assumption is satisfied.

Let us look at the elementary volume in a pore (Fig. 18). The
difference in the diffusion currents of the a-component through the
cross section y and y + dy is equal to the formation rate Zg of the
a-component as a result of all the heterogeneous reactions on the
surface of the pores:

-2 -
m T D ” = _2 — - 1 e
a™T D nldy nr(l-e)Z,dy (a=1, ¥ (2.5.12)

where ny is the density of the number of particles of the a-component
in the pores and the derivative is taken in the direction y.
Boundary conditions for equations (2.5.12) are:

{
n y=0, naanaw"
y=L, nj=0,

e
F w
R
~
~
[0 0]

where L is the mean statistical depth of pores con-
nected to the surface. The second boundary condition
(2.5.14) follows from the condition of non-flowing

Yy trough the solid wall. We will assume that at dis-
Fig. 18 ances of the order Lpy we can disregard the change

of temperature in the material so that the coeffi-
cient of diffusion Dy does not depend on y. Otherwise we would have
to add the equation of thermal conductivity to the system of equa-
tions (2.5.12). In the right-hand side of equations(2.5.12) the simp-
lest correction was made for the internal structure of tt- pores in
such a way that we are limited to the study of flow theory in pores
in a one-dimensional arrangement. Integrating (2.5.12) once and using
(2.5.14) we obtain the escape velocity Uap of the a-component

from the pores:

Ua

L L
p= -n'iznp Domohy =2nTnp(l~ e)of Z,dy.

(2.5.15)
Summing (2.5.15) over o we obtain the amount of substance of

the material which enters the gas phase pdr unit of time- -frem a
unit area of the pores:

L w
u, -znrnp(l—e)gai_f-dzad% (2.5.16)

the mean statistical depth of the pores must be determined exper-
imentally. However, if the value L is unknown, it is permissible
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to replace the upper 1limit of the integration in the integrals of
the equations (2.5.15) and (2.5.16) by @ if Ipoa < L.

Note 1. Let the true reaction rate be of the order of m and
the activation energy E. The gas escape velocity from the pores
is determined by the equation

— ~, —eRT 7L
v:rzD@—=—2nrkc [ nTdy.
dy y=0 (2.5.17)
The boundary conditions are: n = ny at ¥y = 0 and n = 0 at y = L.
Then the mean concentration gradient is -n,/L. The mean concentra-
tion value in the pore is ~ n,/2. Using these simplifications, we
obtain from (2.5.17)
m
—2 N, —~y —E/RT W
nr D"L—=27tfk[€ /Tz—Z—L‘ (2.5.18)
m-1
whence 9 2 = —E/RT m—1
L-2 \/'D/kfe m, (2.5.19) /79

Substituting (2.5.19) in the left-hand and right-hand side of (2.5.18)
we obtain a formula for evaluating the apparent reaction rate

T /-, —E/RT
:;:1 \/r kfe /RTpym+ 1,
s (2.5.20)

u -

Thus, the apparent reaction rate has an order of mtl and the

2
apparent activation energy is 1/2 of the true activation energy.

Note 2. Let us examine the evaporation through the pores of
the material. If we assume that the evaporation mechanism in the
pores of the material is described by the Hertz-Knudsen formula
for nonequilibrium evaporation, then as follows from the above,
the flow in the pores is described by the equation

A(p* —knT
(r, )2

TDn” = - —2Z————2(1-¢). (2.5.21)
v2rmkT
The boundary conditions: y = 0, n = n,; y = L, dn/dy = 0.

Equation (2.5.21) is easily integrated on the assumption that
T =T, = const. If we assume that ¥ << L, the form of the Hertz-
Knudsen formula is retained completely:

Up =Agpp Py —nkT)/V2mmkT. (2.5.22)
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However, equation (2.5.22) includes the effective sticking probabil-
ity which is related in the following way to the sticking probabil-
ity of 4 for a nonporous surface:

Aste L[(1-0)+20/2(1-0)/FAIA. (2.5.23)

Formula (2.5.22) is not valid for very large porosities. This is
because of the very simple way of taking into account the internal
structure of the pores by introducing a correction factor (1 - @)

for the internal effective surface. As we can easily see, (2.5.23)
gives a substantial correction for small values of- 4 and in addi-

tion we note that Aeff can be greater than unity. The necessity

of taking into account evaporation from the material's pores may /80
be one of the reasons for the discrepancy between values of the -
sticking probabilities obtained in the experiments.

Note 3. Let us give equations which describe the flow of a
gas in graphite pores in the absence of sublimation. In writing
the equations the results of experiments from [31,32] (see Section
4, Chapter 2) were used.

n_o
TD n” =2(1—9) ———& - _9. .
aMy = 20=0) 28, e =345, (2.5.24)
2n, +n, + 2n
] 7 o2 (l—0)—3 4 TS5
rD,ny (1-0) n, +n, +2ng (2.5.25)

The carrying away of the mass of the material through the pores:

U, =2%7 (1-e)mm, [ 2dy. (2.5.26)

Note 4. Let only eoné resction occur in the surface pores,
for example

2C+0,—2CO,

while the general form of the differential equation which describes
the flow of the gas in a pore is:

n; =f(n).

(2.5.27)
Equation (2.5.27) can be integrated once:
| "o A %
n’ = 2 (n )d“ +
* Lgf“ * ’ (2.5.28)
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where 4 is the integration constant. If we assume that with y = L,
not only nj = 0 but nyg = 0, then

n Y

o (1
n;=\/70ff("a)d"a . (2.5.29)

The escape of 0, atoms through a zero cross section of the pores

will be:
dn
u. = - T4 S,
5 = ~hpmr (dv)y=o’ (2.5.30)

and the escape velocity of the CO atoms (and therefore C) through
the pores will be:

u 9 =2 dnS\
= -0 =T .
1 r d)')y___o (2.5.31)
Using (2.4.14) in the form
14 —E/RT,
2= 1,55-10"T "¢ V2kng (2.5.32)

and (2.5.29) we obtain

A --E/2RTw Y - - %
u:e pe (CSw &

U, =1,4-10"*Ne(1- o) AT
(2.5.33)

Comment on Chapter 2

If the experimental data with respect to the rate constants
kKpp (r = 1,...,1) of back chemical reactions are known, the forma-
tion rate of the a-component as a result of all the homogeneous
reactions must be determined from the formula [ecf. (2.1.29)]:

- l m’ B v m;.' w __v-','
K - 2(V"—V’)prh HC.’ et kb IIC.’ F) Gﬁl.oooguq
a” v Ver or fri=l j rl.=1 i
The law of effective masses k =k, /k is generally correct for
br fr’ Ter &

a reactiag gas mixture found close to chemical equilibrium.
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CHAPTER 3

NUMERICAL SOLUTIONS TO AEROTHERMOCHEMICAL EQUATIONS

1. Boundary Layer Equations

Let us look at the sB@tionary flow of a chemically nonequilib-
rium gas in the boundary layer on an axisymmetric body. We may
obtain boundary layer equations in the usual way on the basis of
the Prandtl method [22,36] if we assume that 6 << R, where § is
the thickness of the boundary layer and K is the radius of curvature

/82

of the generatrix of

The equation of

the body.

continuity:
d k

d k
- ul’ - = .
ac PUIT 4 5 pur 0 (3.1.1)
The equation of momentum:
o o _ 9P 9 ou
TEL S 1L A N LI
Pos TP an = T as +an("an (3.1.2)
The equation of continuity for the components:
a¢ ac, aj,
u o v 23 an=
s TPV Y on
(3.1.3)
i m, b _ v my W _vir
= 2 0o ~ve ) )Nkp o T T~k "mn¢ .
r=1 " “’[i’ j=11 brP j=1 1
The equation of energy:
ro_ ko
pui ) CmMo‘hm+pvi 2 C M b, =
s =1 ana=l
(3.1.4)
2, 9T _a &

2 j Mo

—uég §L2-+——u
=Has "\ on on “an an gy
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The equation of state:

®
p=PRTE—C-o (3.1.5)

Here the coordinates s and n pertain

19);

to generatrix of the body (Fig.
k = 0 for flat bodies and k =
for bodies of rotation. Bearing
-3 in mind the study of axisymmetric
Veo

transform in the Liz form to
equations (3.1.1) - (3.1.5)

ru

flows let us apply the Dorodnitsyn

Fig. 19 e — f pdn; &= f o.n urids (3.1.6)

‘/ gn_o s=0 w w e
and let us introduce the following dimensionless functions:
f=yA2E; a)‘—l p/A,e,m, s H=M WRT_; T=CpMk/R
[
A, =0ron =rou N2E; h= z'caha
o -

where Y is the flow function determined from (3.1.1) and M; 1is the
molecular weight of one of the components whose choice is arbitrary.

e pU=—%[(\/T";fE +f/ﬁ€)€s V2, A ] (3.
(lfn)x"”n*z( f")ddllnuf; -2l he ~fe bl (3.
(7 + xl:f\(_ z cpaTa)‘Ma "oflﬂ M KT, ), —f 1=
-_2gl:f (Hg+RT'“ pp" u, eg) feH ] “ezfxzxﬁh%“ (3.

- - - e 13 2
(o) a = f €t 2816, g~ feCor)=Ra gg pasliesbe (3.

e>s

.7)

.8)

.9)

.10) /84

73



In the vicinity of the critical point the system (3.1.7) - (c.1.10)

reduces to the form
ov = —fV2p, Myl s (3.1.11)

P
(lfn)x*”n*é'('p_e"fi)-o; (3.1.12) .
vl Mk B - B - - .
(f); ’x);‘lEY‘ r aﬁl"palalMoz" RN N RV RV (3.1.13)

(Tal) A '—fa-a). =

l m)—1 B vy, gV
P14 _Il,r—l - ]T
z (var q,r)P [kfriglci e kb ]nl 1] (3.1.14)

2"63 r=1

Let us give another equation of continuity for the elements:

g - -
ailn'ra[(lax))‘fcaxl=0' T=le, v, a=1,,pe (3.1.15)

In the case of "frozen" boundary layer (see chapter 2, section
2) we can disregard the right-hand sides of the equations of
diffusion (3.1.10) and (3.1.14). Thus,

lnn,
ufn)vffnﬂ( fx) et 2 = 28Ny ~fefande (3.1.16)
(—t *tXEY"Tk % alaxM]" z H M [(la,‘),‘-f )=
2 ulf2 Mk
= gfx U, BERT g)"fgﬂ rM‘RT (3.1.17)
(Tax)x‘fzafzg[fg"_ax‘fxzaal' %=l een, e (3.1.18)

At the critical point of the axisymmetric body:

P
”f)‘l)xl'ff)\xi- (: f:)=0; (3.1.19)
1!3_ » *‘xEY 21 palaxM] 0; (3.1.20)
(la)‘))‘—fcaxSGQ a-l, ceer fbe (3.1.21)
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In the second extreme case of an "equilibrium" boundary layer

(chapter 2, section 2) we obtain:

(lfxx)x+ffm+2< f")dl ug —2§[fxfxg -fgfx).]

vl M; - - —
(ﬁ 13);' t [}Y B T{quCP alakoJ -aEIHaMa.[( lal)l_fcal] =

2e|f,(H M <u,u ) fcH uzf2 —M"l
= do — -— N
( £ RT p e"eg EVA e XXRTC

i

=1 o=

-fg P nmfm), T=1,40.,v=-1;

a=1
I Mo
2 c - 1'
o=1 [+ TR+ 3 ’
B _Yjr 1 B _Vjr
oc ./

. == H C
» ]
]=1 kpr ; z B, j=1 i
p:r o=1 &

At the critical point of the body:

() A +faa+ i‘(pe fx)

( tx +t)‘E'Y— )3 C IaxM]= T H M [(la)"))\ fCa)\]y

2 - 4 -
J = mCoa—~ 2 n  (I,,),=0, v=1,..,v-]
a=1 a=1
e -
r M ¢ =1
aml %@ ’
k ’ »~
r kB _\n, B _ ¥ K’ v
""r(zcc)r-n cih’ HC—ir.
Pe a=1 ji=1 i-l j

2. Boundary Conditions

- ®w - - & -
f 2 RrgCour— I nta(lal)l=2g(f1 Bl"w‘ag"
O ==, -

(3.1.

(3.1.

(3.1,

(3.1.

(3.1.

(3.1.

The boundary conditions of a problem on the surface of a

strong break can be obtained in two ways: either by integrating

22)

.23)

24)

25)

26)

.27)

.28)

.29)

30)

31)
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the equations of continuity, motion and energy over the boundary
encompassing the surface of the body and by subsequent contraction
of the boundary (as was done, for example, in [37,38,25]) or by
writing an equation of balance. It is understood that the final
results obtained by the first or second method coincide. We will
give the derivation of the boundary conditions by the second method
in which the physical sense of each of the equation's terms is
clearly evident.

Let us look at the boundary which includes the surface of the
body. Then the carrying away of energy from the boundary as a
result of diffusion, radiation and convection is compensated by
the supply of energy as a result of the thermal conductivity and by
the entry of the mass of the body with a specific energy suitable
for the energy of the body. Let us disregard the heat flux into
the body and let us also not take into account the radiant heat
flux from the hot gases to the surface which is evidently consider-
able only at very high temperatures (see, for example, the work of
Keck et al [39] on the emission radiation of the air). Below,
for the sake of simplicity, we will assume that the body consists
of one element to which we can apply the index 1. Contracting
the boundary let us obtain

aT ® [od . -4
Jai _ —(pV
™ ailc“h“(pv)+ *E Hodon + 0T, —(pV)_ @, (3.2.1)

where (pv) is the amount of the substance of the hody which enters
the boundary per unit of time across a unit area.

Let us study the baldnce of the mass. The amount of the
a-component carried away from the boundary as a result of convec-
tion and diffusion is equal to the amount Ry, of the component which
enters the boundary as a result of desorption from the surface of
the body plus the amount of the a-component formed in the boundary
as a result of all the homogeneous reactions:

jodo 1-(90)+ ¢, do = R,dv+U do. (3.2.2)
Contracting the boundary and taking into account the fact that
the term Rydv is a value of the highest order of smallness we /87
obtain - R
]a+(pv)+ca=Ua, a=1, coe, s (3.2.3)

The smallness of the term Rqdv in comparison with the other terms
means that if a state of detailed chemical equilibrium is possible
on the surface of the body then it is achieved as a result of
heterogeneous rather than homogeneous reactions. But in an equilib-
rium boundary layer (see Chapter 2, Section 2) the state of detailed
equilibrium which is reached as a result of the rapid flow of reac-
tions in the gas phase is extrapolated right up to the surface of
the body. From the mathematical point of view this is due to the
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discarding of the differential parts of u-v equations of continuity
for the components and their conversion into final equatiomns.

Summing (3.2.3) over o from 1 to u, we obtain

®
(pv), = ail"u=(9”)_r (3.2.4)

We can easily see that, in the first method of obtaining boundary
conditions, (3.2.4) is found by integrating the equation of con-

tinuity over the boundary. In integrating (3.2.4) we used the
physically evident equations
k B
8 j =0' T —
a=1,“ ; ailCaMa-L

Taking into account (3.2.3) and (3.2.4) let us simplify (3.2.1):

3 1
x—I+ Elua(<p—ha)=ecT:,.
o= ’

on (3.2.5)

Let us look at the system & of heterogeneous reactions of the
type:

bS]

n
Z v A +B, =13 Vv~
aol alBat B af.l vo.lAa’ (3.2.8)

where B} is the solid phase component and A, is the gas phase com-
ponent. In a stationary case the desorption rate of the Ag-compo-
nent is equal to its formation rate as a result of all the hetero-
geneous reactions. Then

o P
2 Ugle=hy)= X 2 Uy (e-h,)-

=1 =1 (3.2.7)

s
= I

[ s
u 2 (v =-v Xo=hy)= = U
l u LY | al al * 1=l ”Ql !

1

Here Uy7 is the formation rate of the a-component in the 7th heter- /88
ogeneous reaction, U3z is the combustion rate of the Bj-component

in the Ith reaction and @7 is its heat. Thus the equation of energy
balance is written:

oT 3 4
% 3+ lflullQl- ecT, . (3.2.8)
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1. Sublimation of the Material in the Absence
of Other Heterogeneous Processes

Let us look at a case of the sublimation of a body on whose
surface there are no other heterogeneous processes. Thus the
following reaction takes place on the surface of the body

B,==A4, (3.2.9)

> C ). Equation

(for a body made of graphite this is Cgraphite > Chas

(3.2.8) is simplified:

oT 4
x 5 = (ev)_ L=ecT,, (3.2.10)
where L is the sublimation energy (see Chapter 2, Section 3). Below

in numerical calculations of the boundary layer on a graphite sur-
face the heat of transfer was assumed to be constant; for carbon
its value was taken as 171 kcal/mole in accordance with the recom-
mendation given in the book by Nesmeyanov [27]. Such a value for
L was found by Melvin-Kh'yuz [40] after studying the heats of
reaction. To complete the system of equations and boundary condi-
tions, as we know, we need one more condition for the evaporation
rate. The Hertz-Knudsen formula for nonequilibrium can be this
condition:

AM . 3
(pv) - . P, —P, — (3.2.11)
v2aM RT 1 Te ;;a e
w1l

In the vicinity of the critical point in the Dorodnitsyn variables
the boundary conditions for a sublimating body, on whose surface /89

there are no other heterogeneous processes, are written in the form

I
- 1 1A
Cy =5 +5, (3.2.12)
1 o 2.
Co = Lo/t (3.2.13)
f L Y[ SO‘T’;? 0
T.R " pr T,RVZg,n_d,, (3.2.14%)
AM, * Ciw
f=_ p1 _pe ®
\/4nM1RTwuespwqw zlc'aw (3.2.15)
Qo =
Note. 1If as a result of chemical reactions in the gas phase

the Aj-component transfers to the composition of other gomponents
at a great rate so that e¢j, is near zero, i.e., p; << p] then

78



(3.2.15) is simplified:

. (3.2.16)
es Puw

In the second extreme case when p; ~ p} the equation (3.2.15) is
replaced by

*
P,=P,- (3.2.17)

In this case in the numerical calculations the carrying away of
the mass is determined from the equation of energy and the temper-
ature is determined from (3.2.17). Satisfying (3.2.17) means
physically that the evaporation rate is so great that despite the
escape of the 4; - component as a result of convection, diffusion
and chemical reactions the vapor pressure of the A;-component is
close to the saturation pressure.

2. Catalytic Surface

For a stationary, pure catalysis the following equation must
be satisfied (see Chapter 2, Section 4, Subsection 2)

i;: u,=0. (3.2.18)

o=-1

The following reaction scheme represents the frozen boundary layer:
reactions localized on the surface of the gas-solid body section.
The gas phase is only a resevoir for molecules entering the hetero-
geneous reactions and for molecules formed during the reactions.

In an equilibrium boundary layer we assume that the equilibrium
reached on the surface as a result of heterogeneous catalytic re-
actions is preserved in the gas phase as a result of the action of
homogeneous reactions occurring at a high rate. The system of
equations (3.2.3) permits an investigation that is analogous to
the investigation of transfer to the frozen and equilibrium boun-
dary layer (Section 2, Chapter 2). When the mass transfer as a
result of convection and diffusion is substantially more than the
formation rate of the component as a result of heterogeneous pro-
cesses, the equations are satisfied:

iu+pvca=0, a=1,...,[1-, (3.2-19)

which we can call boundary conditions for a chemically inert and
impervious surface. In the opposite extreme case

U, =90, o«=1,..,p. (3.2.20)

As follows from what we have described earlier (Chapter 2, Section
4, Subsection 2) equations of detailed equilibrium result from
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(3.2.20) for an ideal adsorbed layer. For catalytic reactions the

equation of energy balance is simplified:

x€I=- ; u b, -recT
an a=1

(3.2.21)

At will we can write the balance of energy via heats of reactions

as we did in (3.2.8).

3. Boundary Conditions for a Body Made of Graphite

Using the results from Chapter 2, Section 4, Subsection 3, we
can easily obtain boundary conditions for a case of the streamline

flow of a graphite surface by a high-enthalpy gas mixture.

The balance of mass on the surface:

jp+reve=Uy
i teve, U, (a=2,...,5),

(3.2.22)
(3.2.23)

where U, is the a-component's rate of entering the gas phase and
values of U, are determined from equations (2.4.15) - (2.4.19).
Summing (3.2.22) and (3.2.,23) and converting to the Dorodnitsyn
variables we obtain a condition for the mass rate of evaporation

at the critical point of an axisymmetric body:

. G
AM1<pl—pe m )
E Ca M,

f= _ a=1 _ .
VarM RT o n 4., NvZp n u,

The equation of energy:

MieoTy £, Q s
lt 1 . le C—_ 1 % fllQl=0'

pr 2 1, Rm I.R TeR- =2

whére

3
1
flc - AM (pl e -i;—-‘_:: ‘/4'““ RT Pwﬂwue:'
o

fig =-Uy/V2e,n, 4,
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Qc and QZ are the heats of the following reactions:

Cgraphite == Ciyg (3.2.1)
Céraphitq+0 =—=CO0; (3_2_11).
Cé'iap}iite{* 70,==C0; (3.2.II1)
%ﬂaphh£'+cof—’2co- (3.2.1V)

We can easily see that the equation of mass and energy balance
includes terms which take into account the effect of sublimation
and other heterogeneous reactions in such a way -that the effect of
both carrying-away mechanisms has been divided. Since the pressure
of saturated vapors depends very strongly on temperature (this law
is close to the exponential law) then from evaluation it follows
that the effect of sublimation becomes predominant only at surface
temperatures of ~ 3,000°K. In the case of sufficiently low sur-
face temperatures ( ~ 2,000°K) we can assume that the boundary con-
ditions depend only on the rates of heterogeneous reactions:

[=-Me/NVZp n u__; (3.2.28)

M eoT? 4
i)!_tu)‘_,,,,,wl w lR 2 f,Q,=0. (3.2.29)
i TcRV2pwnwucs TR 1-2
Note: We can easily generalize the obtained expressions for 92
boundary layers on the surface of a body for a case when the body
is a mechanical mixture of different substances Bg. To do this it
is sufficient to introduce the value ¢g = Pg/P which is the share

of the surface occupied by the substance Bg. Obviously if the
escape of the substance Bg from a unit of the surface is (pv)g, the
entire escape is

pv=§.(pl})scps. (3.2.30)
4. Boundary Conditions Taking into Aceount Reactions
in the Pores of the Body.
Using the results from Chapter 2, Section 5, as in Subsection
1l in the same assumptions, let us write the balance of energy on
the surface of the body:
JaT

n W . |
* o= ai lcaha(pll)+ + af lha]a"+eoTw—[UT+Up]<p, (3.2.31)

where Un is the rate of the carrying away of the mass of the body
from the solid surface. Let us look at the mass balance. The
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amount of the o-component carried away from the boundary (which

covers the surface of the body) as a result of convection and diffu-

sion is equal to the amount of the component entering the boundary

as a result of desorption from a solid surface and from the pores

of the body. Contracting the boundary. we obtain
]a+(pv)+ca=ﬂ y B=1, e, 1,

& (3.2.32)

h
where ua =uap+u (3.2.33)

oT *

Summing (3.2.33) over o we obtain an expression for the total carry-
ing away of the mass:

(ev), = U +U,, (3.2.34)

where U, is determined from (2.5.16). Multiplying (3.2.32) by
hg, summing over a and substituting in (3.2.31) we have

(3.2.35)

&
]
®
Q
!
+

i ME

Ua (ha—(P)-
a=1
As we can easily see the external form of (3.,2.3) and (3.2.5) coin-
cides with the external form of (3.2.32) and (3.2.35), The only
difference is in writing the equations for Uy,.

Let us look at the system s of heterogeneous reactions
v, A +B == % voA_, la1
Z Vet et Bi=—= 2 Vapfgr 1T (3.2.36)

We can easily show that in this case the equation of emnergv balance
reduces to the form

T T (1-0) » 2 T z 7
%o =ea T, ~(1- )lf-l llQl—ZW'(l—e)"plEIQI ({ledy’ (3.2.37)

where Z,7 is the combustion rate of the Bj-component in the Zth
heterogeneous reaction. The second term in the right-hand side

of (3.2.37) pertains to the carrying away of the mass of the B,
component of the solid phase as a result of heterogeneous reactions
on the outer side of the body. In many cases we can disregard

this term in comparison with the last term of the right-hand side
of the equation which takes into account the final reaction rates
in the pores of the body. In addition, if [ o < L then the upper
limit of integration may be replaced by o {see Chapter 2, Section
5). In this case the equation of energy balance iIs simplified:

w9 o T —2nF(-om 2 Q, [ Z.d
a=coT, —)nplilQldeHY- (3.2.38)
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Note: Generally the sticking probability f) = 0 is given for

the equation of motion on the surface. However, if in addition to
the solid and gaseous phases there is also a liquid phase then we
must know the velocity of the melt's surface. It is generally

assumed that the profile of the velocity of the melt u is linear:
u=cn, (3.2.39)

Here the coefficient ¢ is determined by the viscosity of the melt.
The temperature profile in the melt is also generally assumed to

be linear. If we solve the steady-state problem, then the thickness
of the melt § is a given value. Writing the other boundary condi-
tions at the boundaries of the section gas-melt, melt solid phase

is done in the usual way as we did it above. Unsteady melting of

a viscous material is studied, for example, in the work by Paskonov
and Polezhayev [41].

5. Conditions at the Outer Limit of a Boundary Layer

Conditions at the outer limit of a boundary layer must be ob-
tained by solving a nonequilibrium problem

t=1, fo=1, ¢ =¢C,,»

For part of the numerical calculations we did not arrange the data
on the basis of a solution of an outer equilibrium problem. In
these cases the state at the outer limit of a bouundary layer was
assumed to be equilibrium. In this case u conditions @, = Tyl are
replaced by u-v independent equations, v-1 conditions of the conser-
u
vation of the element and I 6&Ma = 1 The method for calculating
a=1
the concentrations at a constant pressure is included in the work by
Gurevich and Shaulov [42]. Let us note that recently calculations
were made of the supersonic streamline flow of blunt materials by
an entirely nonequilibrium dissociated gas at varied parameters of
an oncoming current. In the papers by Velotserkovskiy and Dushin
[#43] and Lun'kin and Popov [u44] calculations were made on the basis
of the Dorodnitsyn method for calculating nonequilibrium dissociated
oxygen. Accurate calculations of precisely this kind must yileld
boundary conditions for solving boundary layer equations. We used
the data from the paper by Lun'kin and Popov [44] to make numerical
calculations of a chemically nonequilibrium boundary layer along
the generatrix of the body of rotation.

3. Calculations of the Streamline Boundary Layer
with Chemical Reactions in the Vicinity of the
Critical Point of the Body of Rotation
As we have already mentioned all the calculations were made

on a sample of graphite heat protective coating. As a rule,
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graphite is not used as a heat protective material, mainly due to
the fact that its thermal conductivity coefficient has a substanti-
ally higher value than it has in other coatings [45]. ©Nevertheless,
it is important to study the destruction of graphite in a flow of
high-temperature gas 1f only because its percentage .is great in
many heat protective coatings. In addition the combustion of car-
bon was studied more completely by experiments than other materials
although the study of the mechanism of heterogeneous processes on
the surface of carbon is far from complete. The carrying away of

a mass of graphite as a result of erosion (as we know from experi-
mental data) is substantially less than the carrying away of the
mass as a result of sublimation and heterogeneous combustion.

Thus, a heat protective coating made only of carbon is a very con-
venient model for a theoretical investigation.

The basic purposes for the numerical calculations made on an /95
an electronic computer were:

(1) To calculate the chemically nonequilibrium boundary layer
for a case of the streamline flow of graphite by oxygenjy

(2) To compare existing calculations in the limits of a frozen
and equilibrium boundary layer with calculations made taking into
account the final rate of the chemical reactions occurring in a
gas, on the surface and in the pores of the body;

(3) To study the effect of various molecular models on the
mass velocity of the carrying away of the substance of a body and
the distribution of concentrations, etc.;

(#) To study the effect of the inaccuracy of our information
concerning the pressure of saturated carbon vapors on the values
which characterize the destruction of the coating.

All the cases studied pertain to the streamline flow of a
body which repeats its form during decomposition.

As follows from what we have given above aerothermochemical equa-
tions are very complex and usually do not permit analytical inves-
tigation. Therefore the method of mathematical modeling on compu-
ters becomes the basic method for calculating the effect of any
boundary layer parameter . Calculations were performed in such a
way that on the whole one of the boundary layer parameters changed
while the others remained fixed. In 2ll we made 30 calculations of
the streamline flow of an axisymmetric body in the viecinity of the
critical point. The res of the calculations are given in Table
5. All the calculations, except No. 9, were made for the case of
the streamline flow of graphite by oxygen. Calculation No. 9 repre-
sents the streamline flow of graphite by air. Boundary layer param-
eters for which the calculations were performed, are given in Table
5, We will not recalculate their value for each individual cal-
culation; let us note only that ug,g = 2,200 sec—1 represents the
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No. of cal-
culation

.

OO U WN
.

g.
10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22.

23.
24,
25.
26.
27.
28.
29.
30.

Type of layer

TABLE 5

Molecular rzac-
tion represents
the model

Frozen
Nonequililibriim

"
Frozen
Equilibrium
Nonequilibrium
Frozen
Nonequilibrium
taking into ac-
count the final
heterogeneous
reaction rate
Frozen

"

Nonequilibrium
"
Frozen
Nonequilibrium
Frozen
Nonequilibrium
Frozen
Nonegquilibrium

Frozen
\

n

Frozen with non

equilibrium flow

in the pores

Same
"

Nonequilibrium
with non-
equilibrium

Lennar d-Jones
"

1"
1"

Solid Spheres
"

"
n

Lennard-Jones

Solid Spheres

Lennard-Jones
1"

flow in the pores

R,m P ,atm A €
1 0.981 0.1 0
" " 1"t "
1" " 1" 1"
" " 1" "
" 1" " 1"
1 1" " 1"
1" " " 11"
" 1" " "
" 1" " 1"
" 1.07 0.082 "
1" 1" 1"t 1
i, 10 0.1 "
1" " 1" 1"
I 0.981 " "
" " 1" 1"
o . 2 5 1" l "
" " 1" "t
" 4] O . 5 "
" " 1" 1"
T " O . l "
O . l " l "
1 0.981 - 0.7
" " _ "
" 1" _ "
1" " _ "
" " - "
0.1 " _ "
" " _ 0.8
" n _ 0.7
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—0
6 rA T _,°K
e
0 0 6660.8
" A\ "
" n 1"
1" " "
1" " 1
" n 1"
1" " "
1" " 1"
1" 1 "
mooon 9430
1" " n
U 6660.8
11" " "
" " "
1" 1" "
1" " "
1" " "
" " "
n 1" n
" 1" 1"
" " 1"
o.4 10 660.8
1" 1" 1
n 20 "
0,5 10 "
O . ”_ 1" "
0 O 1"
o.4 10 "
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2327 13
2924.97
3449,65
3452,33
3407.489
3407.543
3411.225
3536.65

3370.5
3554.1
3544,3
3570.7
3574.0
3319.6
3323.3
3210.1
3213.7
3292.6
3295.9
3503.1
3267.4
2033.7

1893.3
2033.6
2013.5
1892.4
2648.8
2598.6
2692.2
2762.1

TABLE 5, con't.

Method of
Measuring
pi

Krnudsen
"

Largmuir
"
"
1"

"
7"

1"
1"

n

-f-10 6—8——.103 A%, cm  A%%*,cm

cm~-*secC
0.435 0.989
0.425 0.967
0.402 0.831
0.410 0.847
0.3757 0.611k4
0.3761 0.6116
0.3865 0.628
0.604 0.860
0.303 0.u46Y4
0.723 1.140
0.678 1.32
0.355 1.94
0.363 1.97
0.378 0.306
0.388 0.324
0.378 1.31
0.390 1.35
0.378 1.27
0.388 1.31
0.384 1.21
0.390 2.09
0.8148 2.063
0.8152 1.85
0.8154 2.064
0.892 2.27
0.780 2.00
0.00105 0.00779
0.351 2.65
0.370 2.73
0.350 2.21

-0.0107 0.0701
0.0123 0.0629
0.0283 0.0589

0.0210 0.0434
0.0085 0.0477
0.0309 0.0410



body with R = 1m. The state of the gas at the outer limit of the

layer was assumed to be equilibrium. In all the calculations we
calculated the transfer coefficients on the basis of the formulas

given in Section 5 of Chapter 1. Approximating polynomlals were

used for the constants of equilibrium and enthalpies [20]. When

the calculation was performed using the Lennard-Jones model tables

of collision integrals from Hirshfelder et al [4] were fed into

the memory of the computer. The collision integrals in the tables

were tabulated in the form of a function of the corrected temper-

ature T% = kT/e where e/k is the parameter of the potential function

of the intermolecular reaction, For intermediate values of T% /98
interpolations were automatically performed on the computer. T

We may divide all the calculations into two groups. In calcu-
lations No. 1 - 21 the blackness coefficient was assumed to be
equal to zero. At surface temperatures of ~ 3,000°K (as follows
from the evaluations in Chapter 3, Section 3, Subsection 3) we may
assume that the boundary conditions for a nonporous surface depend
only on the sublimation rate. Calculations for a porous surface
with € = 0 were not made since experiments were performed by Eyring
and Blyholder only up to a surface temperature of ™~ 2,000°K and
extrapolations of the experimental results for substantially higher
temperatures of the coating may be incorrect. In all the calcula-
tions for this group we assumed that evaporation occurs only in
the form of ( atoms.

Let us look at calculation No. 8 in which we took into account
the final rate of heterogeneous processes on the surface of a
graphite coating, [461]. In the gas phase the following components
were studied

C, COy Cozl 0' 02

and the reactions

1) CO+0 —= CO,; (3.3.1)

2) 30 === 0+0,; (3.3.1II)
3) 0, +20 === 20,; (3.3.III)
4) C+0 = CO. (3.3.1IV)

In the literature we did not find the recombination reaction rates
(3.3.I) and (8.3.IV) which occur via triple collisions. Therefore,
we applied a hypothesis of thermal expansion (see Chapter 2, Sec-
tion 1) to these vreactions. Reaction rate constants (3.3.II) and

(3.3.III) are given in Table 4. Thus, the entire system of equa-
tions in this casé is written in the form:

1 (Pe_ 2 3.3.1

(lf)\)‘))‘+ff)‘)\+§(_p"_fx)=0; ( )
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Pr

vl Ml > 1 ' > 1 C .0
t, ;'x f\-g = GalaM, )= Z HM U~ 8] (3.3.2)

a=1

— _ 1 _ - = 5 _ .
(le)x‘f‘n=2‘—ues k(€ — € C, Kp4azlca ) (3.3.3)
g g ~fep = =Ugp )+ (3.3.14)

- 1 e == [= 5 _
(13)\))\ fcs}\=2ues —kfl C3~52C4/ Plaflca]}; (3.3.5)

T pu 1 -2 =2~ [z 5
gy —fe5n= ﬁ—;{"thE:s - C4cs/ szail Co]_

€

. S_af= 5 _
_kIZP[C4CS—CZ/KP2aE,C£|}; (3.3.8)

lEaMa = 1. (3.3.7)

Mo

o

Here and below we use the symbol Eﬁi = kvi/pe' As we already men-
tioned above with ¢oating temperatures of ~ 3,000%K the boundary
conditions may be written without taking into account the hetero-

geneous reactions (3.2,II) - (3.2.IV), i.e., in the form:
- 1 = .
A=0, °1=m+ll>~/f' (3.3.8)
Eazlax/ft a=2,,..,5,' (3.3-9)
L Y
f + — t =0;

TR e * (3.3.10)

. AM, E N C—aﬂ.
B ﬁ“M!RTw pwnwues ! e\ a=1 (8.8.11)
fy =0 (3.3.12)
Mmoo, t=1, fo =1, Eg=Cgen (3.3.13)

Thus, the concentration ¢;,, is depleted in the calculation process
and we can explain the evaporation mechanism.

In the other calculations of the first group (i.e., Nos. 1-7
and Nos. 10-21, Table 5) the surface is assumed to be catalytic.
For the case of a catalytic wall (as follows from the preliminary
estimations and results of the work by Shchennikov [25]) for wall
temperatures of ~ 8,000°K concentrations of C and Cy everywhere,
including the surface of the body, are negligible ( ~1076) and we
may assume the evaporation to be kinetic. In accordance with
this the Hertz-Knudsen equation is written:
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(pv), = AMp. //2nM RT,, .

Thus, in these calculations the following system
the gas phase was studied:

1) COp,==C0+0;

2) 0+ 0,=— 30;

3) 20,== 20+0,.

The boundary conditions (3.3.8) and (3.3.9) were
equations of equilibrium and conservation of the

- 5 -
ElcaMa , € =c4/2 casz,

In the gas phase equations (3.3.3) -
frozen boundary layer by the equation
=2, cony Do

(sz)x 'fc_ax= 0,

For an equilibrium boundary layer, as we know,

c3=c2c4/z: (A Kpl,

LT+l o ~f G +2(Ty ~ &, +155 ~f &) =

(3.3.14)

of reactions in /100

(3.3.V)
(3.3.VI)
(3.3.V1II)

replaced by the
element (0):

(3.3.15)

(3.3.6) were replaced for the

(3.3.16)

u equations of con-

tinuity are replaced by u-v equations of equilibrium and v equa-

tions of discontinuity for elements.

In order to apply the numer-

ical method described below it was convenient after taking the
logarithm of the equations of equilibrium twice to differentiate
them over A reducing the equations of equilibrium to a differential

equation of the second order of the type

, £,C,

—r» 2 24 2 ’
35t c; 5 sz T, t\ +
T c L ¢
o =2 ® o =2 «
..E — 4 — — »~
- 2%4 ’ 24
+ C3 s fZTTetX 5 _ = 0)
T C L C
a=2 % a=2 *
-2 =2
,r 4 =7 4 »
e T firTeta \+
z Ca % Ca
o=2 o=2
— ’ _ Iz
Jra %
+ Cg s lT tk 5 =
L Cq Z Cy
=2 o =2

(3.3.17)

0, (3.3.18)
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where f; (T) and f,(T) are certain functions which pertain to poly- /101
nomials that approximate the equilibrium constants X,j; and X, 5:
Calculation No. 9 was made for a case of the streamline flow of

graphite by air and includes the components CO, COp, O, 02, N, No

and NO.

The reactions studied:

COy == CO0+0; (3.3.VIII)
0y == 20; (3.3.1IX)
No = 2N; (3.3.X)
NO === Ni+O0. (3.3.XI)
We assumed the wall to be.catalytic. Conditions at the outer limit

of the boundary layer:

fa=1,1=1,7¢,-0,¢C5 =0, ¢, = 0,1503-20"}, T4 - g
Ts = 0,1011-1071; ¢ = 0,1733:107Y; ¢, < 0,2165 - 10-%

In concluding the survey of calculations of the first group
let us note that in calculations No. 1 and 2 we assumed that the
pressure of the saturated carbon vapor corresponds to results of
an experiment performed on the basis of the Knudsen method, and
in the other calculations, on the basis of the Langmuir method
(see Chapter 2, Section 3).

In calculations of the second group (Nos. 22 - 30) the coef-
ficient of blackness of the surface was assumed to be 0.7 (except
in calculation No. 28 where € = 0.8). We were able to disregard
the sublimation of the body since the surface temperature was
sufficiently low (see Chapter 3, Section 3, Subsection 3). Thus,
in the gas phase and in the pores of the body four components
were taken into account: 0, 05, CO and COp. In the gas phase the
following reactions were studied:

1) 202:::20+02; (3.3.XII)
20 0+0, ==30; (3.3.XIII)
oo 0; (3.3.X1IV)
3) co, CO+ (3 3 %v)
4)CO+02:::C02+0.
In the pores of the body and on the surface
S)Cgraphite+o — CO; (3.3.XVI)
6) Cgraphite"’%ozﬁ- CO; (3.3.XVII)
7 Cgraphite+ C02—>2CO. (3.3.XVIII)
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Let us give the complete system of equations and boundary condi-
tions for calculation No. 30 in which the final reaction rates in
the gas phase and in the pores of the body are taken into account

fu7].

The gas phase:

P
(l.f)\)\)x+ffx)‘+1§(—e"‘f;2‘)=0; (3.3.19)
1—‘: +t fy—y-lgcl zHM[(l)f] (3.3.20)
Pr M, R 2Paak = aM Ao d <o
(T = FEpn+ (T30 —fE5a=0; (3.3.21)
(Tya)a - fcsx‘—[kfa -t C4/Kp3 z C)
3 Co M, = 1; (3.3.23)

a= 2

- ~ e [(z, -2 - -

+kf3('c'265 -6334/kp4>], (3.3.24)

where (3.3.21) is the equation of continuity for the element C.
Equations of diffusion for the pores of the material (see Note 3,
Chapter 2, Section 5):

- +n n
TD,ny = —2(1- e)«pL-
Ng+ M+ 2ng° (3.3.25)
n
TD n” =2(1-0)2 — =% «=3,4,5
[+ 2 » 3 ’ y T
N3+ My +2ng (3.3.26)
Boundary conditions:
A =400 t.—.l, fl=l,32=é-3 =0, 6_4 =-C—4e, -C-s =Ese; (3.3.27)
ra0: g leRV2PwToles Q,-U,Q,-U.Q, =ecT;
" Pc X M, 87 T4Ts TsT6 ’ (3.3.28)
Eaf=lax—ua/\/29wﬂwues, a=2,..., 5: (3.3.29)
5 _
f’;izua/vzf’wnwues' fa=0; (3.3.30)
y=+°°:n;=0’ a’z, cee) 5, (3 3 31)

91




where Ua = wrznpmaDan&, @ = 2,..., 5 and ¢ is determined by (2.4.14):

Y —E/RT,
2 =1,55-10" T Vke Yy ge2ngen g,

/103

Calculations Nos. 22-29 pertain to the frozen boundary layer.
However, the flow in the pores was assumed to be nonequilibrium
as before. In accordance with this conditions in (3.4.29) were
replaced by the following boundary conditions:

T T €38y . —~ _9 /5 _ =
26s = » Cs=Cy/ 2 ¢ Ky

5
kp4 a=2 E CaMa=1; (3.3.32)

=2

Ln =FC+ln 185 + 20155 ~f g +Tgp~fE, 1 = 0. (3.3.33)

Equation (3.3.33) is an equation of continuity for element O.
Writing the equations of a frozen boundary layer in a gas phase is
done in the usual way (Chaper 3, Section 2) and we will not do

it here.

Concluding the investigation of calculations Nos. 22 - 30,
let us note that calculation No. 26 in contrast to the others is
performed without taking into account the Eucken correction (see
Chapter 1, Section 4, Subsection 3) for the internal degrees of
freedom of monatomic molecules.

Note. As follows from what we have said above in formulating
the boundary conditions for a frozen boundary layer in order to
complete the task we had to make several assumptions with respect
to the chemical properties of the surface. We assumed that detailed
equilibrium exists on the surface. In fact, even in equilibrium
boundary layer theory on a sublimating surface the assumption is
not clearly made that one of the heterogeneous reactions occurs
in a substantially nonequilibrium way, i.e., the reaction

z for whose rate the Hertz-Knudsen equation was

Cgraphite Cgas

written.

Assuming an equilibrium flow of chemical reactions on the
surface of a body is not the only means of completing the task in
frozen boundary layer theory. In fact, let us look at another
possibility of completing frozen boundary layer equations using
the specific kinetiecs of heterogeneous reactions on the surface of
graphite obtained in experiments by Eyring and Blyholder [31, 321].

For calculations of the first group (& = 0) which were made
for a nonporous surface d predominant effect of the sublimation
reactlion was established. But in the absence of reactions in the /104
gas phase this means that the problem leads to the solution of
boundary layer equations for a binary gas mixture of 0, C (the con-
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centration of 0, at the outer limit of the layer is negligibly
small). The boundary conditions of the problem:

P ‘A.‘*'f =0; fXEO; Mc +M ¢, =1; (3.3.34)

- _ <, "
I4l-fc4=0' f=‘"AMIG’*1 =P —_———>/‘/4ﬂM Ru s anw’ (3.3.35)
w

Clw+Cy4

here L is the sublimation energy ( ~ 171 kCal/mole). The boundary
conditions at the outer limit of the boundary layer are written in
the usual way.

In calculations of the second group (e¥ 0), which were made
for a porous surface, we could also look at only two components,
i.e., 0, CO, since sublimation at temperatures of ~2000°K, as we
have explained, is negligible in comparison with the effect of
heterogeneous combustion reactions on parameters of the boundary

layer. Thus, the boundary conditions of the problem:
fQ M eoTh:
ltx 1891y . (3.3.361]
—_——
Pr T R Teszpwnw ues
MyCo +MyCy =1; I —fCy+l4n—fCy =0; (3.3.37)
-2 Lol V.

where § is the heat of the reaction C + 0 » CO. It is

understood that prior to performing tﬁeagxpe%lments or calculating
the chemically nonequilibrium boundary layer there is no reason to
give preference to one formulation of the problem. In our calcula-
tions the degree of accuracy of the above formulation of the

frozen boundary layer with a detailed chemical equilibrium on the
outer surface of the graphite was controlled by calculations of

the chemically nonequilibrium boundary layer taking into account
the final rate of heterogeneous reactions. For calculations of

the first group this is calculation No. 8 and for calculations of
the second group it is calculation No. 30,

However, we must note that integration of frozen boundary /105
layer equations can be done much more easily on electronic compu-
ters than nonequilibrium boundary layer equations. Moreover,
frozen boundary layer equations permit analytical methods of inves-
tigation. Therefore, it i1s advisable to perform engineering calcu-
lations using frozen boundary layer conditions and controlling cal-
culations in a random way by means of experiments or calculations
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of the chemically nonequilibrium boundary layer.

For certain types of problems (for example, the interaction of
a shock wave with the boundary layer) the values for the displace-
men* thickness (A%) and the pulse loss (A*%*) are of interest.
As we know,

o2 P u
A =f(1-=—=)dy; (3.3.39)
o( pe“e) ’
oo (20 u
A": l—— dy.
of P,u,( ",) (3.3.140)
In Dorodnitsyn variables:
o« ZC,\
a* = f1-f, 22 ,/'2—13“,_ (3.3.41)
0 Eca_t ru.e
oo Eb-ae ng'
At f 2 fa(1=f,) da
o =it A Mru_e ’ (3.3.42)
o
at the critical point:
2 C,
e n L L o
A =\ "’-pl FQ=f)dn-g (1-t 2 Wal; (3.3.143)
€lo 0 zcae

2ue3
oo \ [P0 1 T, 3.3.40
A “Vzu” "eo“l f)f, dx. (3.3.44)

The values of these magnitudes (in cm) for some of the calculations
are given in Table 5. Let us note that in calculation No. 1 a
negative displacement thickness was obtained. This is because the
density p, on the surface of the coating is substantially more than
the density at the outer limit of the boundary layer pp. The

value py > pg by virtue of the fact that T, < T, and the mean molec-

» . > -
ular weight of the mixture on the surface l/gaﬁw l/écae as a

result of the predominance of heavy components on the surface (Fig.
20).

In Figure 21 we have represented the functions cy(r), f(X)
and t(A) for calculations Nos. 3 and 4 (the curves representing the
frozen boundary layer are drawn by dashes).
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In Figure 22 we show the functions eq(A), f(X) and £(A) for
an equilibrium (continuous), frozen (dashed lines) and non-equilibrium
boundary layer with a catalytic wall (dash-dotted 1lines), i.e.,
the results of calculations Nos., 5, 6, and 7.

In Figure 23 analogous funcions are drawn for calculation
No. 8 which was made for a nonequilibrium boundary layer taking into
account the final velocity of heterogeneous reactions, and for
calculation No. 6. of a nonequilibrium boundary layer with a cat-
alytic wall (dashed lines).

In Figure 24 we have given the results of calculating the
streamline flow of graphite by air (calculation No. 9).

In Figure 25 we give the results of calculating the chemically
nonequilibrium boundary layer (No. 30) taking into account the
final rate of heterogeneous reactions and the frozen layer with a

catalytic outer surface and a nonequilibrium flow in the pores of
the body (dashed line).

Figure 26 shows the distribution of concentrations in the pores
of the graphite for these calculations (here and below 7y = na/nsw

In Figure 27 for the same calculations (Nos. 29 and 30) the
distributions Pr(A), «x(A) and n()) are drawn for a nonequilibrium
boundary layer and the frozen layer (dashed lines). As we see from
Figure 27 the Pr number during the change across the boundary layer
fluctuates smoothly around the wvalue 0.7 and differs little from it.

In Figure 28 c4(A), f(1) and t(X) represent calculations No.
22 (solid lines) and No. 25 (dashed lines). Let us note that the
values of the functions e4(A), f(A) and t(X) for calculation No.
24 in which the radius of the pores 1s assumed to be 20 2 practi-
cally coincides with their values in calculation No. 22 (r - 10 2.

In Figure 29 the distributions n (y) represent the calculations
No. 22 (solid lines), No. 25 (dashed lines) and No. 24 (dash-dotted
lines). Thus, in Figure 28 and 29 the values which characterize
the boundary layer for graphite are compared with the different
radius of the pores and the porosity.

In Figure 30 the distributions Pr(Ax) and k(X)) are given for
calculations No. 22 (solid lines) and No. 26 (dashed lines), and
thereby the effect of the Eucken correction on the distribution of
the PP number and the thermal conductivity of the gas mixture
across the boundady layer is explained.

Figures 31 and 32 permit judging the nature of the approach
to detailed equilibrium. As an example graphs of the functions

- 55 _

(Fig. 31) and ¢, 2pue [(fsx) - Tcsk] are
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represented in a discontinuous scale (Fig. 32). As we can easily
see, function ¢ characterizes the convective and diffusion trans-
fer of the Os-component across the boundary layer.

4., Method and some Results of Numerical Calculations
in the Vicinity of the Critical Point

Systems of equations given in Section 4 were solved numerically
on the electronic computer on the basis of the method of successive
approximations. The order of solution was the following. A linear
profile for the concentrations ¢y(Xr), and temperature £(A) and in
the form of quadratic parabolas for f(A) and 7y4(A) was given as
first approximation. Then using the method described in [48] the
pertinent systems of equations were solved. After this, the fol-
lowing approximation for %,, Ty and fp was found by means of the
boundary conditions, and in calculations of the first group (£=0)
the surface temperature was determined from the Hertz-Knudsen equa-
tion and f,, from the energy balance equation on the surface. The
integration step was constant and changed in the range of 0.05-0.1,
except for calculation No. 8. The program for calculating the
chemically nonequilibrium boundary layer was arranged in such a
way as to operate with any group of steps. This was done so as to
eliminate any effect from the value of the step on the accuracy of
calculating close to the wall where @;(A) undergoes a very sharp
change. The described decision procedure resulted in the build-
up of the solution and in the automatic shutdown of the computer
even with the installation of buffers for the boundary conditions.
The installation of buffers at all points was a way out of this situ-
ation. For the (n Tn})th iteration it was not the results of the
n-th iteration ?5'?i that serve?nis the initial numerical materi-

al but rather ¢ which with ¢ were connected by the relation-

. i i
ship

+5(<P(i")-<p(i"—l) Y. (3.4.1)

The size of the buffer 8 was selected on the computer experimentally

and changed in a range from 0.04 (equilibrium boundary layer) to /115
1 (several calculations of the frozen boundary layer). To find

the solution, about 100 iterations were required.

From Table 5 and Figures 20-32 we can make the following con-
clusions, at least for the conditions studied at the outer boundary
and for the shape of the body:

1. The values for T, and G which were obtained by using con-
ditions of a frozen, equilibrium and nonequilibrium boundary layer
and a catalytic wall are almost the same. Generally, using a frozen
layer model leads to a small increase in the temperature of the wall
(in the range of ~ 10° for the examples studied) and to the
carrying away of the mass (in the range of 6%). Thus, i1f the model
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of the catalytic wall represents the physics of the process the use
of frozen boundary layer equations ylelds a completely satisfactory
accuracy for the values which are of greatest interest to practical
workers (G, T, and @_,). The concentration distribution for a
frozen layer and for the layer taking into account the chemical re-
actions in the gas phase differ much more. The concentrations of
components may differ by several times (see, for example, Fig. 25).

ol
-

This leads to a substantial difference in the values A%, A%#,

2. As we have already mentioned above (see Chapter 2, Section
3) the pressure p#* of saturated carbon vapors measured on the basis
of the Knudsen method is approximately 100 times more than p* meas-
ured on the basis of the Langmulr method. However, calculations
using experimental data on the basis of the Knudsen method yielded
a surface temperature approximately 520° lower than T, obtained in
"Langmuir" calculations. The carrying away of the mass of graphite
calculated on the basis of the Knudsen-Langmuir formula is propor-
tional to the pressure p#%* which, in turn, depends exponentially on
the temperature. The substantial decrease in surface temperature
in the "Knudsen" calculations caused the carrying away of graphite
mass to be only 14% more than G (after Langmuir) (cf. calculations
Nos. 1-4).

3. Usiffg the molecular reaction model of Lennard-Jones leads
(in comparison to the solid sphere model) to a certain increase in
surface temperature ( ~ 40°) and to a substantial increase in the
carrying away of the mass (up to 35%) (calculations Nos. 3 and 6
or Nos. 22 and 23).

4. Calculating the seven-component air (No. 9) showed a sig-
nificant decrease in the carrying away of the mass ( ~ 26%) on the
basis of a comparison with analogous calculations for the case of /116
streamline flow of graphite with oxygen.

5. As we have already shown at surface temperatures of ~3000°K
the carrying away of the mass, the temperature and the concentration
distribution on the wall are determined by sublimation of the body.
Thus, we may assume that calculation No. 8 pertains to the case of
a "chemically inert wall". During calculations the concentrations
@1, which determined the sublimation process was worked out. The
pressure of saturated vapors for the surface temperature of this
calculation was pj = 0.00610 atm and p; = 0.00268 atm. Thus the
evaporation process was in the intermediate region between the
kinetic and the diffusion evaporation. The calculation shows an
increase in temperature in comparison with the hypothetical cataly-
tic surface by approximately 130° and a substantial increase in the

carrying away of the mass. This is because of (see Fig. 23) the
rapid transfer of the evaporating carbon to the composition of other
compounds in a narrow zone close to the surface of the material. It

is also because of the increase in heat transfer to the material
and, consequently, the increase in carrying away of the mass (such
a substantial increase in the carrying away of the mass is due to
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the exponential dependence of p%* on temperature). In addition,

the difference in concentrations of the components on the wall is
very great (for example, the concentration of O in No. 8 was approx-
imately 2.5 times more thar ror the case of a catalytic surface.)

6. Let us note that the tenfold decrease in the melting coeffi-
cient (from 1 to 0.1) leads to a substantial increase in surface
temperature (approximately by 300°) and to some increase in the
carrying away of the mass ( ~11%) (see calcualtions Nos. 16-20).

7. There is a very great discrepancy in the concentration dis-
tribution ¢qg for the frozen and nonequilibrium boundary layer taking
into account the final rate of heterogeneous reactions in the pores
of the graphite (see Fig. 25). The carrying away of the mass for
the nonequilibrium boundary layer is approximately 19% lower and
the temperature is approximately 70° higher than for the case of
the frozen boundary layer.

8. The carrying away of the mass for the nonporous surface is
0.003 of the carrying away of the mass for the porous surface.

9. The carrying away of the mass and the temperature of the
porous surface in practice do not depend on the radius of the pores
for the heterogeneous kinetics of reaction which we have studied.
However, the distribution of concentrations in the pores is very
substantially different (see Fig. 29). For pores with ¥ = 20 R the
yield for equilibrium distribution of concegtrations occurs much
more slowly than for a surface with # = 10 A.

10. The calculation of polyatomic gas mixtures without the /117
Eucken correction for the internal degress of freedom of polyatomic
molecules leads to greatly increased values of the Pr number (see
Fig. 30).

11. Let us note that for a porous graphite sphere € = 0.7 and
R = 1m the carrying away of the mass at the critical point was
approximately twice that for a nonporous sphere € = 0. However,

with a decrease in the radius of the sphere the loss of mass as
a result of sublimation grows substantially fastr than as a result
of combustion reactions (cf. calculations Nos. 21 and 29).

12. The approach to detailed equilibrium in the calculations
of a nonequilibrium boundary layer was of a transient and varying
nature; the state of the gas on the surface of the material was very
far from detailed equilibrium. Let us note that the mass transfer
as a result of convection and diffusion across the layer was also
transient and varying (see Figs. 31 and 32).

5. Calculation of the Boundary Layer with Chemical Reactions
along the Generatrix of the Body of Rotation.

Let us give the calculation of a chemically nonequilibrium
layer along the generatrix of a graphite sphere. We assume that
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the rate of the heterogeneous reactions on the surface and in the
pores of the material is finite. We compare the solution obtained
with the calculation on the basis of the local similarity method
and with the calculation of the frozen boundary layer.

The flow of the pu-component chemically nonequilibrium gas in
the boundary layer is described by the following system of equations
(see Chapter 1, Section 3):

“fm)w*ffn’“?(—"f) e &= 26lfy fg~Tefands (3.5.1)

<—— t,> +t)\[ﬁ - -R’f

~fe al+ue fm

M F

Il

- I —
Cpo. Ia)»Mo]" ? HaMa[(lak)k -

—2§E‘)‘<Yt + 2_. cagilaMa

Mk pe I .
ITT 3 Uelleg f%, aﬂa“a”‘x ’ (3.5.2)
-— - . = 2 — — .
(Iak)k—fcak=R PUE ‘2g[fkcag“fgca)~]’ (3.5.3)
= { e v’ R Tl
R,= & (v )kf, vl ongir-—1  _ nelrl; (3.5.4)
r=l ar ar l=ll kpr [ rl—_-l]

n, D

P, \*=1
- | & _ Bk _ )
I .= — = M,L .{¢sy T €, —C, & C a=1,000, e
or” pe g=1 Brap\"Proor ¢ Boly ak (3.5.5)

The assumption concerning local similarity is one of the methods /118

of approximation for solving the system (3.5.1) - (3.5.5). At any
point s the dependencies of the desired variables (f,¢,G,) on £ are
assumed to be such that we can disregard their derlvatlves with
respect to §&. Then the right-hand sides of the equations (3.5.1)
and (3.5.2) are equal to zero and equations (3.5.1)ad (3.5.2)
become normal differential equations. The equations of diffusion
for the components (3.5.3) reduce to the normal differential equa-
tions only if we assume a frozen boundary layer (F,6 = 0) or an
equilibrium boundary layer when equations of detalﬁed equilibrium
follow from equations Ry = 0 (see Chapter 2, Section 2). This

is because in front of Fy there is a factor 2&/uy,&g; which clearly
depends on £. For substantially nonequilibrium flows, disregarding
the formation rate of F, components is a very rough approximation.
However, for cross sections not too far from the critical point

we may replace 2&/ugfg by its .value at the critical point.
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In face, assuming that

N, =uess+ue333;
M = Mwo +"wzsz ;
Py = Pw0+Pw2sz;
r =§ +f3$ »

let us obtain

2g 1 s2f4U,5 ny,, Pw2 ‘
e "ﬁ—l——.?.— m o *% +2T 4] (3.5.6)
ebs es es w0 w0

The value in brackets for small values of s differs little from 1.

Let us note, for example, that in the calculation given below

28/ugkg ~5-10"8% at 3 = 0.8 at the same time that 1/2uy,g~3.27-107°

(8 = s/Rg=0 where Rg—g is the radius of curvature of the material

at the critical point). 1In the converted assumptions, equations /119
(3.5.1) - (3.5.3) become normal differential equations with para-

meters depending on the local conditions in nonturbulent flow and

on the surface of the body. Thus, the equations of local similarity

are the following:

Pe f2>dluu, (3.5.7)
A

(3.5.8)

(Iak)k_fzax=Ra(l/2ues)s=0' (3.5.9)

It is interesting to note that all the calculations on the
basis of the local similarity method, taking into account the term
ugfi M, 1/RT_ in the energy equation, to a substantially lesser de-
gree resulted in an accurate solutiom. Without taking into account
this term the system of local similarity equations coincides for-
mally with equations which describe the flow in the vicinity of
the critical point. It is natural that the correctness of the
assumption concerning local similarity depends on how slaeawly the
parameters of the outer flow change and in fact whether the terms
excluded from the equations are small in comparison with the re-
maining terms. We can check this only by solving the problem
accurately.
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We made a numerical calculation for the case of the streamline
flow of a graphite sphere with oxygen O and O,. In the gas phase
the following reactions were examined:

1) 20, == 20 +0,; (3.5.1)

2) 0+04 = 30; (3.5.1I1)
3) CO, == C0+0; (3.5.III)
4)CO+ 0, == C0,+0. (3.5.1IV)

Thus the gas phase consisted of a mixture of four components. We
assumed that in the pores of the body only 0Oy reacts since the con- /120
centration of atomic oxygen O and CO, on the surface of the body in ~
the calculations was sufficiently small ( ~ 10%):

1 . .
Cgraphite*‘g‘oz — CO. (3.5.V)

In this case the velocity Uy of the carrying away of carbon atoms
as a result of the diffusion of CO from the graphite pores 1is
written in the finite form (see Note U4, Chapter 2, Section 5)

3
B Yy v —E/2RT, % {_ 4
u,=1,4-10 4Ne(l—e) ’Tw/‘c "’pe/‘<cs/

x

(3.5.10)

0
\R
-

a=1

where N is Avogadro's number, 6 is the porosity and F is the
activation energy of ~ 2 kCal/mole. The boundary conditions of

the problem:

Jo + pucy = UM, /N; (3.5.11)

,[3+va3-0; (3.5.12)

Tovovey = 0; (3.5.13)
Jgs + pucg = UgMg/N;

(3.5.14)

pv=U, M, /N; (3.5.15)

x&T/&ﬂ- scT,: -U,QslN. (3.5.16)

Here U; and Us are the formation rates of the components CO and O;
as a result of the heterogeneous reactions. In Dorodnitsyn variables:

- - T4 —
cz(fg,+2§[s)-r\/z_g(ln-_e_‘/%;:'&_uz); (3.5.17)
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T, (fe, +2&f, )= IR (3.5.18)

_ - rup m. -
Cs(fes+28f5) = '\/E(lsx T w us)

s (3.5.19)
V2
f VFE 2g
= -{M - fs (3.5.20)
Q \/25,' T M, V38
= t1+T R5 2% w IVES (3.5.21)
r cRe,n, . 0, p ru.RT,

We took the conditions at the outer limit from Lun'kin and Popov

[44] who examined the streamline flow of a sphere by a chemically
nonequilibrium ideal gas (oxygen). In the numerical calculations

the distributions Zg,, Pg and T were approximated on the basis of

s polynomials of the fourth power. The streamline flow conditions: /121
M_ = 10, p_ = 0.01 atm and T _ = 290° K. At the critical point of
the body pe = 1.315 atm, Tg, = 8297°K and ¢y = 0.1199. We took the
radius of the sphere as equal to 1 cm. To solve the system of
equations (3.6.1) - (3.6.5) in special derivatives a linear method
with a different scheme of the second order of accuracy with
respect to & and A was selected. To calculate the derivatives of
§ in the Z-th cross section we must know the desired functions in
the 2, 2-1 and 2-2 cross sections. In zero approximation the dis-
tribution of functions in the Z-1 section is communicated to the
1-th layer. The obtained system of normal nonlinear differential
equations was solved with the use of iteration. At each iteration
the values of the derivatives of the desired functions with respect
to & was corrected. The described solution method gave rise to
varying instability. The stability of the analysis was ensured by
introducing a damping coefficient on the basis of the formula

[ef. (3.%.1)]

‘(s)
@. " =<p(s’ +$SN¢‘” - )y, (3.5.22)

in t,n—1 tll—-l

(s)

where ¢ in is the value of the desired function ¢. in the s~th

’
cross section obtained in the n-th iteration and ¢ (S) is the
value of this function used in the (m+1)-th 1terat10n. The wvalue
of the coefficient 8(8) changed in the range from 0.1 at 8 = 0 to
0.01 at 8 = 1. We performed the numerical calculation up to g = 1
since the solution to the outer nonequilibrium problem is in the
work of Lun'kin and Popov [44]. Let us note that the critical
point is singular. To escape from it we must generally apply the
series expansion of the desired functions with respect to 8. How-
ever, in this calculation we applied the results of the calculation
for 8 = 0 to the first layer. As we have explained, moving the
solution at the critical point to the first layer in the first step
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s = 0.1 does not cause any substantial error in the solution. The
calculation was performed in the variables A and &' so that equations
(3.5.1) - (3.5.5) became integral-differential; the integrals were
found on the basis of the Simpson formula. The calculation across
the boundary layer was performed with a constant interval equal to
0.1 up to 2 = 10.

In Figure 33 we have given the distributions fe’ Tw, P, e,

and Cs5y (here we have introduced the symbol T = T/Te J ) and in
3

Figure 34 we have given the distributions Cups Cuyp» © and Cape

2w
The dashed line represents the solution obtained on the basis of
the local similarity method, and the distributions of the values
Pgs Te’ Cly and ¢s, at the outer 1limit of the boundary layer are

drawn by a dash-dot line. Let us find the friction stress on the
wall: /124

T = (O By = 0,0, W (a0 TAEE - (3.5.23)

In Figure 35 we have given 74 and (pv), on the surface of the body.
The local similarity method in this problem coincides satisfactorily

(pv)y with the accurate solution ( ~ 13% at § = 1.0) but elevates

the surface temperature somewhat. The distributions of e¢gy(§) differ
substantially from those obtained in the precise solution. Let us
note that a slight decrease (with the increase of ug(8) to &= 1
inclusive) of Ty at & = 1.0 is due to the substantial drop in the
values of py and ny as a result of the decrease in surface temper-
ature. In Figure 36 and 37 we have drawn on a discontinuous scale

the function VY which characterizes the deviation from local equilib-

rium [V = 4p / Z a_? - 251 for the cross sections 8§ = 0
a=
and § = 1.0. Here Kp is the equilibrium constant of the reactions
(3.5.I) and (3.5.I¥). We can easily see that with an increase in
s the deviation from local equilibrium in this problem is increased

substantially. As we have mentioned in taking into account the term
2f2 M Z/RT in the energy equations in calculations on the basis of

of tﬁe local similarity method the results were less accurate. As
an example in Figure 38 we have given the functions ¢, (1) and

t(A2) for ¢ = 0.3. The solid lines correspond to the prec1se solu-
tion, the dash-dot lines indicate that the term uzfAAMkZ/RT has

been taken into account and the dashed lines, that it has not. In
Figure 39 we have drawn the displacement thicknesses and the pulse
losses A%, A%%, It is interesting to note that A*(s} is a diminish-
ing function which assumes negative values at sufficiently large
values of 8. This 1s because the density within the boundary layer
was more than at the outer limit of the layer. Nevertheless, at
large values of § the dynamic boundary layer is substantially
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thinner than the temperature boundary layer. As an example we have

given in Figure 39 the functions p(N/p ul(A)/u, and ¢ (1) for

g8 = 0.8 [see (3.4.41) - (3.4.44) Ffor values of A% and A®*]. Finally,
in Figure 40 we have compared the calculation of the frozen boundary
layer at the critical point. The dashed lines represent the frozen

boundary layer. In calculating the frozen boundary layer we have

assumed the state of the gas at the wall to be equilibrium. In
accordance with this the boundary conditions of (3.5.11) - (3.5.14)
were replaced by the following conditions:

2_-

55 = (Eg/éz)chps where ips is the equilibrium constant of the
o
reaction

2C0+0,== 2C0,; (3.5.VI)

— —_ - = 1 — -
C4= 0, EcmM“=l, 12x+13)‘=—f('M—"'62—C3)o
1

Let us note the great difference in the distribution of concentra- /125

tions across the boundary layer in frozen and nonequilibrium flows.
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